-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
Hecate/Grip2a Acts to Reorganize the Cytoskeleton in the Symmetry-Breaking Event of Embryonic Axis Induction
One of the earliest and most crucial events in animal development is the establishment of the embryonic dorsal axis. In amphibians and fish, this event depends on the transport of so-called “dorsal determinants” from one region of the egg, at the pole opposite from the site where the oocyte nucleus lies, towards the site of axis induction. There, the dorsal determinant activates the Wnt signaling pathway, which in turn triggers dorsal gene expression. Dorsal determinant transport is mediated by the reorganization of a cellular network composed of microtubules. We determine that hecate, a zebrafish gene active during egg formation that is essential for embryonic axis induction, is required for an early step in this microtubule reorganization. We find that hecate corresponds to glutamate receptor interacting protein 2a, which participates in other animal systems in Wnt-based pathways. We also show that the microtubule reorganization dependent on hecate results in a subtle symmetry-breaking event that subsequently becomes amplified by a more general transport process independent of hecate function. Our data reveal new links between glutamate receptor interacting protein 2a, Wnt signaling and axis induction, and highlights basic mechanisms by which small changes early in development translate into global changes in the embryo.
Vyšlo v časopise: Hecate/Grip2a Acts to Reorganize the Cytoskeleton in the Symmetry-Breaking Event of Embryonic Axis Induction. PLoS Genet 10(6): e32767. doi:10.1371/journal.pgen.1004422
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004422Souhrn
One of the earliest and most crucial events in animal development is the establishment of the embryonic dorsal axis. In amphibians and fish, this event depends on the transport of so-called “dorsal determinants” from one region of the egg, at the pole opposite from the site where the oocyte nucleus lies, towards the site of axis induction. There, the dorsal determinant activates the Wnt signaling pathway, which in turn triggers dorsal gene expression. Dorsal determinant transport is mediated by the reorganization of a cellular network composed of microtubules. We determine that hecate, a zebrafish gene active during egg formation that is essential for embryonic axis induction, is required for an early step in this microtubule reorganization. We find that hecate corresponds to glutamate receptor interacting protein 2a, which participates in other animal systems in Wnt-based pathways. We also show that the microtubule reorganization dependent on hecate results in a subtle symmetry-breaking event that subsequently becomes amplified by a more general transport process independent of hecate function. Our data reveal new links between glutamate receptor interacting protein 2a, Wnt signaling and axis induction, and highlights basic mechanisms by which small changes early in development translate into global changes in the embryo.
Zdroje
1. HoustonDW (2012) Cortical rotation and messenger RNA localization in Xenopus axis formation. WIREs Dev Biol 1 : 371–388.
2. JesuthasanS, SträhleU (1997) Dynamic microtubules and specification of the zebrafish embryonic axis. Curr Biol 7 : 31–42.
3. MizunoT, YamahaE, KuroiwaA, TakedaH (1999) Removal of vegetal yolk causes dorsal deficiencies and impairs dorsal-inducing ability of the yolk cell in zebrafish. Mech Dev 81 : 51–63.
4. OberEA, Schulte-MerkerS (1999) Signals from the yolk cell induce mesoderm, neuroectoderm, the trunk organizer, and the notochord in zebrafish. Dev Biol 215 : 167–181.
5. NojimaH, ShimizuT, KimC-H, YabeT, BaeY-K, et al. (2004) Genetic evidence for involvement of maternally derived Wnt canonical signaling in dorsal determination in zebrafish. Mech Dev 121 : 371–386.
6. NojimaH, RothhämelS, ShimizuT, KimC-H, YonemuraS, et al. (2010) Syntabulin, a motor protein linker, controls dorsal determination. Development 137 : 923–933.
7. LuF-I, ThisseC, ThisseB (2011) Identification and mechanism of regulation of the zebrafish dorsal determinant. Proc Natl Acad Sci USA 108 : 15876–15880.
8. TranLD, HinoH, QuachH, LimS, ShindoA, et al. (2012) Dynamic microtubules at the vegetal cortex predict the embryonic axis in zebrafish. Development 139 : 3644–3652.
9. GordonMD, NusseR (2006) Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem 281 : 22429–22433.
10. PetersenCP, ReddienPW (2009) Wnt signaling and the polarity of the primary body axis. Cell 139 : 1056–1058.
11. TaoQ, YokotaC, PuckH, KofronM, BirsoyB, et al. (2005) Maternal Wnt11 activates the canonical Wnt signaling pathway required for axis formation in Xenopus embryos. Cell 120 : 857–871.
12. ChaS-W, TadjuidjeE, TaoQ, WylieC, HeasmanJ (2008) Wnt5a and Wnt11 interact in a maternal Dkk1-regulated fashion to activate both canonical and non-canonical signaling in Xenopus axis formation. Development 135 : 3719–3729.
13. ChaS-W, TadjuidjeE, WhiteJG, WellsJ, MayhewC, et al. (2009) Wnt11/5a complex formation caused by tyrosine sulfation increases canonical signaling activity. Curr Biol 19 : 1573–1580.
14. PelegriF, Schulte-MerkerS (1999) A gynogenesis-based screen for maternal-effect genes in the zebrafish,. Meth Cell Biol 60 : 1–20.
15. KellyC, ChinAJ, LeathermanJL, KozlowskiDJ, WeinbergES (2000) Maternally controlled β-catenin-mediated signaling is required for organizer formation in the zebrafish. Development 127 : 3899–3911.
16. DoschR, WagnerDS, MintzerKA, RunkeG, WiemeltAP, et al. (2004) Maternal control of vertebrate development before the midblastula transition: mutants from the zebrafish I. Dev Cell 6 : 771–780.
17. PelegriF, DekensMPS, Schulte-MerkerS, MaischeinH-M, WeilerC, et al. (2004) Identification of recessive maternal-effect mutations in the zebrafish using a gynogenesis-based method. Dev Dyn 231 : 325–336.
18. WagnerDS, DoschR, MintzerKA, WiemeltAP, MullinsMC (2004) Maternal control of development at the midblastula transition and beyond: mutants from the zebrafish II. Dev Cell 6 : 781–790.
19. BellipanniG, VargaM, MaegawaS, ImaiY, KellyC, et al. (2006) Essential and opposing roles of zebrafish β-catenins in the formation of dorsal axial structures and neuroectoderm. Development 133 : 1299–1309.
20. Lyman-GingerichJ, WestfallTA, SlusarskiDC, PelegriF (2005) hecate, a zebrafish maternal effect gene, affects dorsal organizer induction and intracellular calcium transient frequency. Dev Biol 286 : 427–439.
21. AtamanB, AshleyJ, GorczycaD, GorczycaM, MathewD, et al. (2006) Nuclear trafficking of Drosophila Frizzled-2 during synapse development requires the PDZ protein dGRIP. Proc Natl Acad Sci USA 103 : 7841–7846.
22. KorkutC, AtamanB, RamachandranP, AshleyJ, BarriaR, et al. (2009) Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless. Cell 139 : 393–404.
23. Lyman-GingerichJ, LindemanR, PutiriE, StolzmannK, PelegriF (2006) The analysis of axis induction mutant embryos reveals morphogenetic events associated with zebrafish yolk extension formation. Dev Dyn 235 : 2749–2760.
24. KishimotoY, LeeK-H, ZonL, HammerschmidtM, Schulte-MerkerS (1997) The molecular nature of zebrafish swirl: BMP2 function is essential during early dorsoventral patterning. Development 124 : 4457–4466.
25. MohlerJ, WieschausEF (1986) Dominant maternal effect mutations of Drosophila melanogaster causing the production of double-abdomen embryos. Genetics 112 : 808–822.
26. LehmannR, Nüsslein-VolhardC (1991) The maternal gene nanos has a central role in posterior pattern formation of the Drosophila embryo. Development 112 : 679–691.
27. MeiW, LeeKW, MarlowFL, MilerAL, MullinsMC (2009) hnRNP I is required to generate the Ca2+ signal that causes egg activation in zebrafish. Development 136 : 3007–3017.
28. CarneyTJ, FeitosaNM, SonntagC, SlanchevK, KlugerJ, et al. (2010) Genetic analysis of fin development in zebrafish identifies Furin and Hemicentin1 as potential novel Fraser Syndrome disease genes. PLoS Genet 6: e1000907.
29. Marchler-BauerA, BryantSH (2004) CD-Search: protein domain annotations on the fly. Nuc Acids Res 32: W327–331.
30. ChristoffelsA, KohEG, ChiaJM, BrennerS, AparicioS, et al. (2004) Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Mol Biol Evol 21 : 1146–1151.
31. SémonM, WolfeKH (2007) Reciprocal gene loss between Tetraodon and zebrafish after whole genome duplication in their ancestor. Trends Genet 23 : 108–112.
32. TarbashevichK, KoebernickK, PielerT (2007) XGRIP2.1 is encoded by a vegetally localizing, maternal mRNA and functions in germ cell development and anteroposterior PGC positioning in Xenopus laevis. Dev Biol 311 : 554–565.
33. YoonC, KawakamiK, HopkinsN (1997) Zebrafish vasa homologue RNA is localized to the cleavage planes of 2 - and 4-cell-stage embryos and is expressed in the primordial germ cells. Development 124 : 3157–3165.
34. PelegriF, KnautH, MaischeinH-M, Schulte-MerkerS, Nüsslein-VolhardC (1999) A mutation in the zebrafish maternal-effect gene nebel affects furrow formation and vasa RNA localization. Curr Biol 9 : 1431–1440.
35. KnautH, PelegriF, BohmannK, SchwarzH, Nüsslein-VolhardC (2000) Zebrafish vasa RNA but not its protein is a component of the germ plasm and segregates asymmetrically prior to germ line specification. J Cell Biol 149 : 875–888.
36. TheuschEV, BrownKJ, PelegriF (2006) Separate pathways of RNA recruitment lead to the compartmentalization of the zebrafish germ plasm. Dev Biol 292 : 129–141.
37. EnoC, PelegriF (2013) Gradual recruitment and selective clearing generate germ plasm aggregates in the zebrafish embryo. Bioarchitecture 3 : 125–132.
38. BraatAK, ZandbergenT, van de WaterS, GoosHJT, ZivkovicD (1999) Characterization of zebrafish primordial germ cells: morphology and early distribution of vasa RNA. Dev Dyn 216 : 153–167.
39. BontemsF, SteinA, MarlowF, LyauteyJ, GuptaT, et al. (2009) Bucky ball organizes germ plasm assembly in zebrafish. Curr Biol 19 : 414–422.
40. GuptaT, MarlowFL, FerriolaD, MackiewiczK, DapprichJ, et al. (2010) Microtubule actin crosslinking factor 1 regulates the balbiani body and animal-vegetal polarity of the zebrafish oocyte. PLoS Genet 6: e1001073.
41. CoxRT, SpradlingAC (2003) A Balbiani body and the fusome mediate mitochondrial inheritance during Drosophila oogenesis. Development 130 : 1579–1590.
42. PeplingME, WilhelmJE, O'HaraAL, GephartGW, SpradlingAC (2007) Mouse oocytes within germ cell cysts and primordial follicles contain a Balbiani body. Proc Natl Acad Sci USA 104 : 187–192.
43. MarlowFL, MullinsMC (2008) Bucky ball functions in Balbiani body assembly and animal-vegetal polarity in the oocyte and follicle cell layer in zebrafish. Dev Biol 321 : 40–50.
44. De BrabanderM, GeuensG, NuydensR, WillebrordsR, De MeyJ (1961) Taxol induces the assembly of free microtubules in living cells and blocks the organizing capacity of the centrosomes and kinetochores. Proc Natl Acad Sci USA 78 : 5608–5612.
45. DonovanMJ, HartNH (1986) Cortical granule exocytosis is coupled with membrane retrieval in the egg of Brachydanio. J Exp Zool 237 : 391–405.
46. MaegawaS, YasudaK, InoueK (1999) Maternal mRNA localization of zebrafish DAZ-like gene. Mech Dev 81 : 223–226.
47. HashimotoY, MaegawaS, NagaiT, YamahaE, SuzukiH, et al. (2004) Localized maternal factors are required for zebrafish germ cell formation. Dev Biol 268 : 152–161.
48. OlsenLC, AaslandR, FjoseA (1997) A vasa-like gene in zebrafish identifies putative primordial germ cells. Mech Dev 66 : 95–105.
49. De RobertisEM, KurodaH (2004) Dorsal-ventral patterning and neural induction in Xenopus embryos. Annu Rev Cell Dev Biol 20 : 285–308.
50. PelegriF (2003) Maternal factors in zebrafish development. Dev Dyn 228 : 535–554.
51. MarrariY, TerasakiM, ArrowsmithV, HoulistonE (2000) Local inhibition of cortical rotation in Xenopus eggs by an anti-KRP antibody. Dev Biol 224 : 250–262.
52. MarrariY, RouviereC, HoulistonE (2004) Complementary roles for dynein and kinesins in the Xenopus egg cortical rotation. Dev Biol 271 : 38–48.
53. CuykendallTN, HoustonDW (2009) Vegetally localized Xenopus trim36 regulates cortical rotation and dorsal axis formation. Development 136 : 3057–3065.
54. MeiW, JinZ, LaiF, SchwendT, HoustonDW, et al. (2013) Maternal Dead-End1 is required for vegetal cortical microtubule assembly during Xenopus axis specification. Development 140 : 2334–2344.
55. ChanAP, KlocM, EtkinLD (1999) fatvg encodes a new localized RNA that uses a 25-nucleotide element (FVLE1) to localize to the vegetal cortex of Xenopus oocytes. Development 126 : 4943–4953.
56. ChanAP, KlocM, LarabellCA, LeGrossM, EtkinLD (2007) The maternally localized RNA fatvg is required for cortical rotation and germ cell formation. Mech Dev 124 : 350–363.
57. DongH, ZhangP, SongI, PetraliaRS, LiaoD, et al. (1999) Characterization of the Glutamate receptor-interacting proteins GRIP1 and GRIP2. J Neurosci 19 : 6930–6941.
58. LeeHJ, ZhengJJ (2010) PDZ domains and their binding partners: structure, specificity, and modification. Cell Commun Signal 8 : 8.
59. BardL, GrocL (2011) Glutamate receptor dynamics and protein interaction: lessons from the NMDA receptor. Mol Cell Neurosci 48 : 298–307.
60. IvarssonY (2012) Plasticity of PDZ domains in ligand recognition and signaling. FEBS Lett 586 : 2638–2647.
61. TakamiyaK, KostourouV, AdamsS, JadejaS, ChalepakisG, et al. (2004) A direct functional link betwen the multi-PDZ domain protein GRIP1 and the Fraser sydrome protein Fras1. Nat Genet 36 : 172–177.
62. SugiuraT, ShimizuT, KijimaA, MinakataS, KatoY (2011) PDZ adaptors: their regulation of epithelial transporters and involvement in human diseases. J Pharm Sci 100 : 3620–3635.
63. SetouM, SeogDH, TanakaY, KanaiY, TakeiY, et al. (2002) Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature 417 : 83–87.
64. SuQ, CaiQ, GerwinC, SmithCL, ShengZH (2004) Syntabulin is a microtubule-associated protein implicated in syntaxin tranport in neurons. Nat Cell Biol 6 : 941–953.
65. CaiQ, GerwinC, ShengZH (2005) Syntabulin-mediated anterograde transport of mitochondria along neuronal processes. J Cell Biol 170 : 959–969.
66. CaiQ, PenPY, ShengZH (2007) Syntabulin-kinesin-1 family member 5B-mediated axonal tranport contributes to activity-dependent presynaptic assembly. J Neurosci 27 : 7284–7296.
67. FagniL, AngoF, PeroyJ, BockaertJ (2004) Identification and functional roles of metabotropic glutamate receptor-interacting proteins. Sem Cell Dev Biol 15 : 289–298.
68. FurukawaJ (2012) Structure and function of glutamate receptor amino terminal domains. J Physiol 590 : 63–72.
69. LarabellCA, TorresM, RowningBA, YostC, MillerJR, et al. (1997) Establishment of the dorsoventral axis in Xenopus embryos is presaged by early asymmetries in β-catenin that are modulated by the Wnt signalling pathway. J Cell Biol 136 : 1123–1134.
70. RowningBA, WellsJ, WuM, GerhartJC, MoonRT, et al. (1997) Microtubule-mediated transport of organelles and localization of β–catenin to the future dorsal side of Xenopus eggs. Proc Natl Acad Sci USA 94 : 1224–1229.
71. MillerJR, RowningBA, LarabellCA, Yang-SnyderJA, BatesR, et al. (1999) Establishment of the dorsal-ventral axis in Xenopus embryos coincides with the dorsal enrichment of dishevelled that is dependent on cortical rotation. J Cell Biol 146 : 427–437.
72. WeaverC, FarGHIII, PanW, RowningBA, WangJ, et al. (2003) GBP binds kinesin light chain and translocates during cortical rotation in Xenopus eggs. Development 130 : 5425–5436.
73. SwanLE, WichmannC, PrangeU, SchmidA, SchmidtM, et al. (2004) A glutamate receptor-interacting protein homolog organizes muscle guidance in Drosophila. Genes Dev 18 : 223–237.
74. SwanLE, SchmidtM, SchwarzT, PonimaskinE, PrangeU, et al. (2006) Complex interaction of Drosophila GRIP PDZ domains and Echinoid during muscle morphogenesis. EMBO J 25 : 3640–3651.
75. KumeS, InoueT, MikoshibaK (2000) Gαs family G proteins activate IP3-Ca2+ signaling via Gβγ and transduce ventralizing signals in Xenopus. Dev Biol 226 : 88–103.
76. SaneyoshiT, KumeS, AmasakiY, MikoshibaK (2002) The Wnt/calcium pathway activates NF-AT and promotes ventral cell fate in Xenopus embryos. Nature 417 : 295–299.
77. WestfallTA, BrimeyerR, TwedtJ, GladonJ, OlberdingA, et al. (2003) Wnt5/pipetail functions in vertebrate axis formation as a negative regulator of Wnt/β-catenin activity. J Cell Biol 162 : 889–898.
78. WestfallTA, HjertosB, SlusarskiDC (2003) Requirement for intracellular calcium modulation in zebrafish dorsal-ventral patterning. Dev Biol 259 : 380–391.
79. WuS-Y, ShinJ, SepichDS, Solnica-KrezelL (2012) Chemokine GPCR signaling inhibits β-catenin during zebrafish axis formation. PLoS Biol 10: e1001403.
80. ElinsonRP, RowningB (1988) Transient array of parallel microtubules in frog eggs: potential tracks for a cytoplasmic rotation that specifies the dorso-ventral axis. Dev Biol 128 : 185–197.
81. HoulistonE, ElinsonRP (1991) Patterns of microtubule polymerization relating to cortical rotation in Xenopus laevis eggs. Development 112 : 107–117.
82. SchroederMM, GardDL (1992) Organization and regulation of cortical microtubules during the first cell cycle of Xenopus eggs. Development 114 : 699–709.
83. FuentesR, FernándezJ (2010) Ooplasmic segregation in the zebrafish zygote and early embryo: pattern of ooplasmic movements and transport pathways. Dev Dyn 239 : 2172–2189.
84. Solnica-KrezelL, DrieverW (1994) Microtubule arrays of the zebrafish yolk cell: organization and function during epiboly. Development 120 : 2443–2455.
85. KaneshiroK, MiyauchiM, TanigawaY, IkenishiK, KomiyaT (2007) The mRNA coding for Xenopus glutamate receptor interacting protein 2 (XGRIP2) is maternally transcribed, transported through the late pathway and localized to the germ plasm. Biochem Biophys Res Commun 355 : 902–906.
86. KirilenkoP, WeierudFK, ZornAM, WoodlandHR (2008) The efficiency of Xenopus primordial germ cell migration depends on the germplasm mRNA encoding the PDZ domain protein Grip2. Differentiation 76 : 392–403.
87. St. JohnstonD, Nüsslein-VolhardC (1992) The origin of pattern and polarity in the Drosophila embryo. Cell 68 : 201–219.
88. RebscherN, Zelada-GonzálezF, BanischTU, RaibleF, ArendtD (2007) Vasa unveils a common origin of germ cells and of somatic stem cells from the posterior growth zone in the polychaete Platynereis dumerilii. Dev Biol 306 : 599–611.
89. WangY, ZayasRM, GuoT, NewmarkPA (2007) nanos function is essential for development and regeneration of planarian germ cells. Proc Natl Acad Sci USA 104 : 5901–5906.
90. GazaveE, BéhagueJ, LaplaneL, GuillouA, PréauL, et al. (2013) Posterior elongation in the annelid Platynereis dumerilii involves stem cells molecularely related to primordial germ cells. Dev Biol 382 : 246–267.
91. Brand M, Granato M, Nüsslein-Volhard C (2002) Keeping and raising zebrafish. In: Nüsslein-Volhard C, Dahm R, editors. Zebrafish - A Practical Approach. Oxford: Oxford University Press. 7–37 p.
92. PelegriF, MullinsM (2011) Genetic screens for mutations affecting adult traits and parental-effect genes. Meth Cell Biol 104 : 83–120.
93. KimmelC, BallardWW, KimmelSR, UllmannB, SchillingTF (1995) Stages of embryonic development in the zebrafish. Dev Dyn 203 : 253–310.
94. FinkJL, HamiltonN (2007) DomainDraw: a macromolecular feature drawing program. In Silico Biol 7 : 145–150.
95. PelegriF, MaischeinH-M (1998) Function of zebrafish β-catenin and TCF-3 in dorsoventral patterning. Mech Dev 77 : 63–74.
96. Schulte-MerkerS, HammerschmidtM, BeuchleD, ChoK, DeRobertisEM, et al. (1994) Expression of the zebrafish goosecoid and no tail gene products in wild-type and mutant ntl embryos. Development 120 : 843–852.
97. Schulte-MerkerS, LeeKJ, McMahonAP, HammerschmidtM (1997) The zebrafish organizer requires chordino. Nature 387 : 862–863.
98. JolyJ-S, JolyC, Schulte-MerkerS, BoulkebacheH, CondamineH (1993) The ventral and posterior expression of the homeobox gene eve1 is perturbed in dorsalized and mutant embryos. Development 119 : 1261–1275.
99. LekvenAC, ThorpeCJ, WaxmanJS, MoonRT (2001) Zebrafish wnt8 encodes two wnt8 proteins on a bicistronic transcript and is required for mesoderm and neuroectoderm pattterning. Dev Cell 1 : 103–114.
100. ThisseC, ThisseB, SchillingTF, PostlethwaitJH (1993) Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. Development 119 : 1203–1215.
101. SelmanK, WallaceRA, SarkaA, QiX (1993) Stages of oocyte development in the zebrafish, Brachydanio rerio. J Morphol 218 : 203–224.
Štítky
Genetika Reprodukčná medicína
Článok vyšiel v časopisePLOS Genetics
Najčítanejšie tento týždeň
2014 Číslo 6- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
-
Všetky články tohto čísla
- Inflammation: Gone with Translation
- Recombination Accelerates Adaptation on a Large-Scale Empirical Fitness Landscape in HIV-1
- Caspase Inhibition in Select Olfactory Neurons Restores Innate Attraction Behavior in Aged
- Accurate, Model-Based Tuning of Synthetic Gene Expression Using Introns in
- A Novel Peptidoglycan Binding Protein Crucial for PBP1A-Mediated Cell Wall Biogenesis in
- Ancient DNA Analysis of 8000 B.C. Near Eastern Farmers Supports an Early Neolithic Pioneer Maritime Colonization of Mainland Europe through Cyprus and the Aegean Islands
- The Epidermal Growth Factor Receptor Critically Regulates Endometrial Function during Early Pregnancy
- Introgression from Domestic Goat Generated Variation at the Major Histocompatibility Complex of Alpine Ibex
- Netrins and Wnts Function Redundantly to Regulate Antero-Posterior and Dorso-Ventral Guidance in
- Coordination of Wing and Whole-Body Development at Developmental Milestones Ensures Robustness against Environmental and Physiological Perturbations
- Phenotypic Dissection of Bone Mineral Density Reveals Skeletal Site Specificity and Facilitates the Identification of Novel Loci in the Genetic Regulation of Bone Mass Attainment
- Deep Evolutionary Comparison of Gene Expression Identifies Parallel Recruitment of -Factors in Two Independent Origins of C Photosynthesis
- Loss of UCP2 Attenuates Mitochondrial Dysfunction without Altering ROS Production and Uncoupling Activity
- Translational Regulation of Specific mRNAs Controls Feedback Inhibition and Survival during Macrophage Activation
- Rosa26-GFP Direct Repeat (RaDR-GFP) Mice Reveal Tissue- and Age-Dependence of Homologous Recombination in Mammals
- Abnormal Type I Collagen Post-translational Modification and Crosslinking in a Cyclophilin B KO Mouse Model of Recessive Osteogenesis Imperfecta
- : Clonal Reinforcement Drives Evolution of a Simple Microbial Community
- Reviving the Dead: History and Reactivation of an Extinct L1
- Defective iA37 Modification of Mitochondrial and Cytosolic tRNAs Results from Pathogenic Mutations in TRIT1 and Its Substrate tRNA
- Early Back-to-Africa Migration into the Horn of Africa
- Aberrant Autolysosomal Regulation Is Linked to The Induction of Embryonic Senescence: Differential Roles of Beclin 1 and p53 in Vertebrate Spns1 Deficiency
- Microbial Succession in the Gut: Directional Trends of Taxonomic and Functional Change in a Birth Cohort of Spanish Infants
- Integrated Pathway-Based Approach Identifies Association between Genomic Regions at CTCF and CACNB2 and Schizophrenia
- Genetic Determinants of Long-Term Changes in Blood Lipid Concentrations: 10-Year Follow-Up of the GLACIER Study
- Palaeosymbiosis Revealed by Genomic Fossils of in a Strongyloidean Nematode
- Early Embryogenesis-Specific Expression of the Rice Transposon Enhances Amplification of the MITE
- PINK1-Mediated Phosphorylation of Parkin Boosts Parkin Activity in
- OsHUS1 Facilitates Accurate Meiotic Recombination in Rice
- Genetic Background Drives Transcriptional Variation in Human Induced Pluripotent Stem Cells
- Pervasive Divergence of Transcriptional Gene Regulation in Caenorhabditis Nematodes
- N-WASP Is Required for Structural Integrity of the Blood-Testis Barrier
- The Transcription Factor TFII-I Promotes DNA Translesion Synthesis and Genomic Stability
- An Operon of Three Transcriptional Regulators Controls Horizontal Gene Transfer of the Integrative and Conjugative Element ICE in B13
- Digital Genotyping of Macrosatellites and Multicopy Genes Reveals Novel Biological Functions Associated with Copy Number Variation of Large Tandem Repeats
- ATRA-Induced Cellular Differentiation and CD38 Expression Inhibits Acquisition of BCR-ABL Mutations for CML Acquired Resistance
- The EJC Binding and Dissociating Activity of PYM Is Regulated in
- JNK Controls the Onset of Mitosis in Planarian Stem Cells and Triggers Apoptotic Cell Death Required for Regeneration and Remodeling
- Mouse Y-Linked and Are Expressed during the Male-Specific Interphase between Meiosis I and Meiosis II and Promote the 2 Meiotic Division
- Rasa3 Controls Megakaryocyte Rap1 Activation, Integrin Signaling and Differentiation into Proplatelet
- Transcriptional Control of Steroid Biosynthesis Genes in the Prothoracic Gland by Ventral Veins Lacking and Knirps
- Souffle/Spastizin Controls Secretory Vesicle Maturation during Zebrafish Oogenesis
- The POU Factor Ventral Veins Lacking/Drifter Directs the Timing of Metamorphosis through Ecdysteroid and Juvenile Hormone Signaling
- The First Endogenous Herpesvirus, Identified in the Tarsier Genome, and Novel Sequences from Primate Rhadinoviruses and Lymphocryptoviruses
- Sequence of a Complete Chicken BG Haplotype Shows Dynamic Expansion and Contraction of Two Gene Lineages with Particular Expression Patterns
- Background Selection as Baseline for Nucleotide Variation across the Genome
- CPF-Associated Phosphatase Activity Opposes Condensin-Mediated Chromosome Condensation
- The Effects of Codon Context on Translation Speed
- Glycogen Synthase Kinase (GSK) 3β Phosphorylates and Protects Nuclear Myosin 1c from Proteasome-Mediated Degradation to Activate rDNA Transcription in Early G1 Cells
- Regulation of Gene Expression in Autoimmune Disease Loci and the Genetic Basis of Proliferation in CD4 Effector Memory T Cells
- Muscle Structure Influences Utrophin Expression in Mice
- BLMP-1/Blimp-1 Regulates the Spatiotemporal Cell Migration Pattern in
- Identification of Late Larval Stage Developmental Checkpoints in Regulated by Insulin/IGF and Steroid Hormone Signaling Pathways
- Transport of Magnesium by a Bacterial Nramp-Related Gene
- Sgo1 Regulates Both Condensin and Ipl1/Aurora B to Promote Chromosome Biorientation
- The HY5-PIF Regulatory Module Coordinates Light and Temperature Control of Photosynthetic Gene Transcription
- The Rim15-Endosulfine-PP2A Signalling Module Regulates Entry into Gametogenesis and Quiescence Distinct Mechanisms in Budding Yeast
- Regulation of Hfq by the RNA CrcZ in Carbon Catabolite Repression
- Loss of a Neural AMP-Activated Kinase Mimics the Effects of Elevated Serotonin on Fat, Movement, and Hormonal Secretions
- Positive Feedback of Expression Ensures Irreversible Meiotic Commitment in Budding Yeast
- Hecate/Grip2a Acts to Reorganize the Cytoskeleton in the Symmetry-Breaking Event of Embryonic Axis Induction
- Regulatory Mechanisms That Prevent Re-initiation of DNA Replication Can Be Locally Modulated at Origins by Nearby Sequence Elements
- Speciation and Introgression between and
- PLOS Genetics
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- Early Back-to-Africa Migration into the Horn of Africa
- PINK1-Mediated Phosphorylation of Parkin Boosts Parkin Activity in
- OsHUS1 Facilitates Accurate Meiotic Recombination in Rice
- An Operon of Three Transcriptional Regulators Controls Horizontal Gene Transfer of the Integrative and Conjugative Element ICE in B13
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy