#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Larger Mammalian Body Size Leads to Lower Retroviral Activity


Retroviruses have been invading mammalian genomes for over 100 million years, leaving traces known as endogenous retroviruses (ERVs). Early genome sequencing studies revealed a marked difference in the activity of retroviruses among species, with humans largely containing inactive lineages of ERVs, while the mouse contains numerous lineages of active ERVs. We explore the hypothesis that life history traits determine the activity of ERVs in mammalian genomes, and show that larger mammals have fewer ERV copies over recent evolutionary time (the last 10 million years) compared to smaller mammals. This association is determined by body size independently of any confounding variables. We build a mathematical model that shows that ERV abundance in genomes decreases with larger body size and increases with horizontal transmission. Retroviral integration can cause cancer, and our analysis suggests that larger bodied animals control ERV replication in order to postpone cancer until a post-reproductive age. This is in line with a long-standing observation that cancer rates do not fluctuate among mammals of different body size, a phenomenon known as Peto's paradox, and opens up the possibility that larger animals have evolved mechanisms to limit ERV activity.


Vyšlo v časopise: Larger Mammalian Body Size Leads to Lower Retroviral Activity. PLoS Pathog 10(7): e32767. doi:10.1371/journal.ppat.1004214
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004214

Souhrn

Retroviruses have been invading mammalian genomes for over 100 million years, leaving traces known as endogenous retroviruses (ERVs). Early genome sequencing studies revealed a marked difference in the activity of retroviruses among species, with humans largely containing inactive lineages of ERVs, while the mouse contains numerous lineages of active ERVs. We explore the hypothesis that life history traits determine the activity of ERVs in mammalian genomes, and show that larger mammals have fewer ERV copies over recent evolutionary time (the last 10 million years) compared to smaller mammals. This association is determined by body size independently of any confounding variables. We build a mathematical model that shows that ERV abundance in genomes decreases with larger body size and increases with horizontal transmission. Retroviral integration can cause cancer, and our analysis suggests that larger bodied animals control ERV replication in order to postpone cancer until a post-reproductive age. This is in line with a long-standing observation that cancer rates do not fluctuate among mammals of different body size, a phenomenon known as Peto's paradox, and opens up the possibility that larger animals have evolved mechanisms to limit ERV activity.


Zdroje

1. BannertN, KurthR (2006) The evolutionary dynamics of human endogenous retroviral families. Annu Rev Genomics Hum Genet 7: 149–173.

2. Katzourakis A, Tristem M (2005) Phylogeny of human endogenous and exogenous retroviruses. In: Sverdlov ED, editor. Retroviruses and primate genome evolution. Austin, TX: Landes Bioscience. pp. 186–203.

3. KatzourakisA, PereiraV, TristemM (2007) Effects of recombination rate on human endogenous retrovirus fixation and persistence. J Virol 81: 10712–10717.

4. BelshawR, WatsonJ, KatzourakisA, HoweA, Woolven-AllenJ, et al. (2007) Rate of recombinational deletion among human endogenous retroviruses. J Virol 81: 9437–9442.

5. MagiorkinisG, GiffordRJ, KatzourakisA, De RanterJ, BelshawR (2012) Env-less endogenous retroviruses are genomic superspreaders. Proc Natl Acad Sci U S A 109: 7385–7390.

6. WaterstonRH, Lindblad-TohK, BirneyE, RogersJ, AbrilJF, et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520–562.

7. LanderES, LintonLM, BirrenB, NusbaumC, ZodyMC, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921.

8. KimuraM (1962) On the probability of fixation of mutant genes in a population. Genetics 47: 713–719.

9. OhtaT, GillespieJH (1996) Development of Neutral and Nearly Neutral Theories. Theor Popul Biol 49: 128–142.

10. LavialleC, CornelisG, DupressoirA, EsnaultC, HeidmannO, et al. (2013) Paleovirology of “syncytins”, retroviral env genes exapted for a role in placentation. Philosophical transactions of the Royal Society of London Series B, Biological sciences

11. CornelisG, HeidmannO, Bernard-StoecklinS, ReynaudK, VeronG, et al. (2012) Ancestral capture of syncytin-Car1, a fusogenic endogenous retroviral envelope gene involved in placentation and conserved in Carnivora. Proceedings of the National Academy of Sciences of the United States of America 109: E432–441.

12. AswadA, KatzourakisA (2012) Paleovirology and virally derived immunity. Trends Ecol Evol 27: 627–636.

13. JernP, CoffinJM (2008) Effects of retroviruses on host genome function. Annu Rev Genet 42: 709–732.

14. KatzourakisA, RambautA, PybusOG (2005) The evolutionary dynamics of endogenous retroviruses. Trends Microbiol 13: 463–468.

15. StoyeJP (2012) Studies of endogenous retroviruses reveal a continuing evolutionary saga. Nat Rev Microbiol 10: 395–406.

16. DaughertyMD, MalikHS (2012) Rules of engagement: molecular insights from host-virus arms races. Annu Rev Genet 46: 677–700.

17. DuggalNK, EmermanM (2012) Evolutionary conflicts between viruses and restriction factors shape immunity. Nat Rev Immunol 12: 687–695.

18. MaksakovaIA, RomanishMT, GagnierL, DunnCA, van de LagemaatLN, et al. (2006) Retroviral elements and their hosts: insertional mutagenesis in the mouse germ line. PLoS Genet 2: e2.

19. BielbyJ, MaceGM, Bininda-EmondsOR, CardilloM, GittlemanJL, et al. (2007) The fast-slow continuum in mammalian life history: an empirical reevaluation. Am Nat 169: 748–757.

20. HarcourtAH, HarveyPH, LarsonSG, ShortRV (1981) Testis weight, body weight and breeding system in primates. Nature 293: 55–57.

21. SoulsburyCD (2010) Genetic patterns of paternity and testes size in mammals. PLoS One 5: e9581.

22. ElliotMG, CrespiBJ (2009) Phylogenetic evidence for early hemochorial placentation in eutheria. Placenta 30: 949–967.

23. PagelM (1999) Inferring the historical patterns of biological evolution. Nature 401: 877–884.

24. Wilson SayresMA, VendittiC, PagelM, MakovaKD (2011) Do variations in substitution rates and male mutation bias correlate with life-history traits? A study of 32 mammalian genomes. Evolution 65: 2800–2815.

25. MartinAP, PalumbiSR (1993) Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci U S A 90: 4087–4091.

26. LynchM, ConeryJS (2003) The origins of genome complexity. Science 302: 1401–1404.

27. LynchM, GabrielW (1990) Mutational load and the survival of small populations. Evolution 44: 1725–1737.

28. DamuthJ (1981) Population density and body size in mammals. Nature 290: 699–700.

29. CatlettKK, SchwartzGT, GodfreyLR, JungersWL (2010) “Life history space”: a multivariate analysis of life history variation in extant and extinct Malagasy lemurs. Am J Phys Anthropol 142: 391–404.

30. BelshawR, PereiraV, KatzourakisA, TalbotG, PacesJ, et al. (2004) Long-term reinfection of the human genome by endogenous retroviruses. Proc Natl Acad Sci U S A 101: 4894–4899.

31. BelshawR, DawsonAL, Woolven-AllenJ, ReddingJ, BurtA, et al. (2005) Genomewide screening reveals high levels of insertional polymorphism in the human endogenous retrovirus family HERV-K(HML2): implications for present-day activity. J Virol 79: 12507–12514.

32. DewannieuxM, HarperF, RichaudA, LetzelterC, RibetD, et al. (2006) Identification of an infectious progenitor for the multiple-copy HERV-K human endogenous retroelements. Genome Res 16: 1548–1556.

33. TarlintonRE, MeersJ, YoungPR (2006) Retroviral invasion of the koala genome. Nature 442: 79–81.

34. TarlintonR, MeersJ, HangerJ, YoungP (2005) Real-time reverse transcriptase PCR for the endogenous koala retrovirus reveals an association between plasma viral load and neoplastic disease in koalas. J Gen Virol 86: 783–787.

35. MayRM, AndersonRM (1983) Epidemiology and genetics in the coevolution of parasites and hosts. Proc R Soc Lond B Biol Sci 219: 281–313.

36. AndersonRM, MayRM (1982) Coevolution of hosts and parasites. Parasitology 85(Pt 2): 411–426.

37. FraserC, LythgoeK, LeventhalGE, ShirreffG, HollingsworthTD, et al. (2014) Virulence and pathogenesis of HIV-1 infection: an evolutionary perspective. Science 343: 1243727.

38. SlotkinRK, MartienssenR (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8: 272–285.

39. CastanedaJ, GenzorP, BortvinA (2011) piRNAs, transposon silencing, and germline genome integrity. Mutat Res 714: 95–104.

40. CaulinAF, MaleyCC (2011) Peto's Paradox: evolution's prescription for cancer prevention. Trends Ecol Evol 26: 175–182.

41. PetoR, RoeFJ, LeePN, LevyL, ClackJ (1975) Cancer and ageing in mice and men. Br J Cancer 32: 411–426.

42. BarbotW, DupressoirA, LazarV, HeidmannT (2002) Epigenetic regulation of an IAP retrotransposon in the aging mouse: progressive demethylation and de-silencing of the element by its repetitive induction. Nucleic acids research 30: 2365–2373.

43. VollmerJ (2009) Autophagy links pattern recognition receptor to tumor cell apoptosis. Mol Therapy 17: 1839–1841.

44. KatzourakisA, GiffordRJ (2010) Endogenous viral elements in animal genomes. PLoS Genet 6: e1001191.

45. KatzourakisA, GiffordRJ, TristemM, GilbertMT, PybusOG (2009) Macroevolution of complex retroviruses. Science 325: 1512.

46. KumarS, SubramanianS (2002) Mutation rates in mammalian genomes. Proc Natl Acad Sci U S A 99: 803–808.

47. WelchJJ, Bininda-EmondsOR, BromhamL (2008) Correlates of substitution rate variation in mammalian protein-coding sequences. BMC Evol Biol 8: 53.

48. HarmonLJ, WeirJT, BrockCD, GlorRE, ChallengerW (2007) GEIGER: investigating evolutionary radiations. Bioinformatics 24: 129–131.

49. JonesKE, BielbyJ, CardilloM, FritzSA, O'DellJ, et al. (2009) PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90: 2648–2648.

50. Bininda-EmondsORP, CardilloM, JonesKE, MacPheeRDE, BeckRMD, et al. (2007) The delayed rise of present-day mammals. Nature 446: 507–512.

51. ParadisE, ClaudeJ, StrimmerK (2004) APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics 20: 289–290.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#