#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Frustrated Host Response to Is Bypassed by MyD88-Dependent Translation of Pro-inflammatory Cytokines


Translation inhibition is a common virulence mechanism used by a number of pathogens (e.g. Diphtheria Toxin, Shiga Toxin and Pseudomonas Exotoxin A). It has been a mystery how host cells mount a pathogen-specific response and clear infection under conditions where protein synthesis is blocked by pathogens. Using Legionella pneumophila as a model, a bacterium that efficiently blocks the host protein translation machinery, we show here that the innate immune system has devised a mechanism to cope with translation inhibition by selectively synthesizing proteins that are required for inflammation.


Vyšlo v časopise: The Frustrated Host Response to Is Bypassed by MyD88-Dependent Translation of Pro-inflammatory Cytokines. PLoS Pathog 10(7): e32767. doi:10.1371/journal.ppat.1004229
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004229

Souhrn

Translation inhibition is a common virulence mechanism used by a number of pathogens (e.g. Diphtheria Toxin, Shiga Toxin and Pseudomonas Exotoxin A). It has been a mystery how host cells mount a pathogen-specific response and clear infection under conditions where protein synthesis is blocked by pathogens. Using Legionella pneumophila as a model, a bacterium that efficiently blocks the host protein translation machinery, we show here that the innate immune system has devised a mechanism to cope with translation inhibition by selectively synthesizing proteins that are required for inflammation.


Zdroje

1. AkiraS, HemmiH (2003) Recognition of pathogen-associated molecular patterns by TLR family. Immunol Lett 85: 85–95.

2. MedzhitovR, JanewayCJr (2000) Innate immunity. N Engl J Med 343: 338–344.

3. JonesJD, DanglJL (2006) The plant immune system. Nature 444: 323–329.

4. DanglJL, JonesJD (2001) Plant pathogens and integrated defence responses to infection. Nature 411: 826–833.

5. AusubelFM (2005) Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 6: 973–979.

6. MatzingerP (2002) The danger model: a renewed sense of self. Science 296: 301–305.

7. DunbarTL, YanZ, BallaKM, SmelkinsonMG, TroemelER (2012) C. elegans detects pathogen-induced translational inhibition to activate immune signaling. Cell Host Microbe 11: 375–386.

8. McEwanDL, KirienkoNV, AusubelFM (2012) Host translational inhibition by Pseudomonas aeruginosa Exotoxin A Triggers an immune response in Caenorhabditis elegans. Cell Host Microbe 11: 364–374.

9. ShinS, CaseCL, ArcherKA, NogueiraCV, KobayashiKS, et al. (2008) Type IV secretion-dependent activation of host MAP kinases induces an increased proinflammatory cytokine response to Legionella pneumophila. PLoS Pathog 4: e1000220.

10. FontanaMF, BangaS, BarryKC, ShenX, TanY, et al. (2011) Secreted bacterial effectors that inhibit host protein synthesis are critical for induction of the innate immune response to virulent Legionella pneumophila. PLoS Pathog 7: e1001289.

11. FontanaMF, ShinS, VanceRE (2012) Activation of host mitogen-activated protein kinases by secreted Legionella pneumophila effectors that inhibit host protein translation. Infect Immun 80: 3570–3575.

12. TattoliI, SorbaraMT, VuckovicD, LingA, SoaresF, et al. (2012) Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program. Cell Host Microbe 11: 563–575.

13. HorwitzMA, SilversteinSC (1980) Legionnaires' disease bacterium (Legionella pneumophila) multiples intracellularly in human monocytes. J Clin Invest 66: 441–450.

14. VogelJP, AndrewsHL, WongSK, IsbergRR (1998) Conjugative transfer by the virulence system of Legionella pneumophila. Science 279: 873–876.

15. BrandBC, SadoskyAB, ShumanHA (1994) The Legionella pneumophila icm locus: a set of genes required for intracellular multiplication in human macrophages. Mol Microbiol 14: 797–808.

16. HubberA, RoyCR (2010) Modulation of host cell function by Legionella pneumophila type IV effectors. Annu Rev Cell Dev Biol 26: 261–283.

17. LosickVP, IsbergRR (2006) NF-kappaB translocation prevents host cell death after low-dose challenge by Legionella pneumophila. J Exp Med 203: 2177–2189.

18. KaganJC, RoyCR (2002) Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites. Nat Cell Biol 4: 945–954.

19. KaganJC, SteinMP, PypaertM, RoyCR (2004) Legionella subvert the functions of Rab1 and Sec22b to create a replicative organelle. J Exp Med 199: 1201–1211.

20. BangaS, GaoP, ShenX, FiscusV, ZongWX, et al. (2007) Legionella pneumophila inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family. Proc Natl Acad Sci U S A 104: 5121–5126.

21. HeidtmanM, ChenEJ, MoyMY, IsbergRR (2009) Large-scale identification of Legionella pneumophila Dot/Icm substrates that modulate host cell vesicle trafficking pathways. Cell Microbiol 11: 230–248.

22. RowbothamTJ (1980) Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J Clin Pathol 33: 1179–1183.

23. VanceRE (2010) Immunology taught by bacteria. J Clin Immunol 30: 507–511.

24. NashTW, LibbyDM, HorwitzMA (1984) Interaction between the legionnaires' disease bacterium (Legionella pneumophila) and human alveolar macrophages. Influence of antibody, lymphokines, and hydrocortisone. J Clin Invest 74: 771–782.

25. ShinS (2012) Innate Immunity to Intracellular Pathogens: Lessons Learned from Legionella pneumophila. Adv Appl Microbiol 79: 43–71.

26. MassisLM, ZamboniDS (2011) Innate immunity to legionella pneumophila. Front Microbiol 2: 109.

27. ArcherKA, AderF, KobayashiKS, FlavellRA, RoyCR (2010) Cooperation between multiple microbial pattern recognition systems is important for host protection against the intracellular pathogen Legionella pneumophila. Infect Immun 78: 2477–2487.

28. ArcherKA, AlexopoulouL, FlavellRA, RoyCR (2009) Multiple MyD88-dependent responses contribute to pulmonary clearance of Legionella pneumophila. Cell Microbiol 11: 21–36.

29. ArcherKA, RoyCR (2006) MyD88-dependent responses involving toll-like receptor 2 are important for protection and clearance of Legionella pneumophila in a mouse model of Legionnaires' disease. Infect Immun 74: 3325–3333.

30. NewtonCA, PerkinsI, WidenRH, FriedmanH, KleinTW (2007) Role of Toll-like receptor 9 in Legionella pneumophila-induced interleukin-12 p40 production in bone marrow-derived dendritic cells and macrophages from permissive and nonpermissive mice. Infect Immun 75: 146–151.

31. BarryKC, FontanaMF, PortmanJL, DuganAS, VanceRE (2013) IL-1alpha Signaling Initiates the Inflammatory Response to Virulent Legionella pneumophila In Vivo. J Immunol 190: 6329–6339.

32. FontanaMF, VanceRE (2011) Two signal models in innate immunity. Immunol Rev 243: 26–39.

33. ShenX, BangaS, LiuY, XuL, GaoP, et al. (2009) Targeting eEF1A by a Legionella pneumophila effector leads to inhibition of protein synthesis and induction of host stress response. Cell Microbiol 11: 911–926.

34. BelyiY, NiggewegR, OpitzB, VogelsgesangM, HippenstielS, et al. (2006) Legionella pneumophila glucosyltransferase inhibits host elongation factor 1A. Proc Natl Acad Sci U S A 103: 16953–16958.

35. BelyiY, TabakovaI, StahlM, AktoriesK (2008) Lgt: a family of cytotoxic glucosyltransferases produced by Legionella pneumophila. J Bacteriol 190: 3026–3035.

36. IvanovSS, RoyCR (2013) Pathogen signatures activate a ubiquitination pathway that modulates the function of the metabolic checkpoint kinase mTOR. Nat Immunol 14(12): 1219–28.

37. FriedmanH, YamamotoY, KleinTW (2002) Legionella pneumophila pathogenesis and immunity. Semin Pediatr Infect Dis 13: 273–279.

38. Li GobbiF, BenucciM, Del RossoA (2005) Pneumonitis caused by Legionella pneumoniae in a patient with rheumatoid arthritis treated with anti-TNF-alpha therapy (infliximab). J Clin Rheumatol 11: 119–120.

39. WelshCT, SummersgillJT, MillerRD (2004) Increases in c-Jun N-terminal kinase/stress-activated protein kinase and p38 activity in monocyte-derived macrophages following the uptake of Legionella pneumophila. Infect Immun 72: 1512–1518.

40. LiZ, DuganAS, BloomfieldG, SkeltonJ, IvensA, et al. (2009) The amoebal MAP kinase response to Legionella pneumophila is regulated by DupA. Cell Host Microbe 6: 253–267.

41. LosickVP, HaensslerE, MoyMY, IsbergRR (2010) LnaB: a Legionella pneumophila activator of NF-kappaB. Cell Microbiol 12: 1083–1097.

42. DiezE, LeeSH, GauthierS, YaraghiZ, TremblayM, et al. (2003) Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila. Nat Genet 33: 55–60.

43. RenT, ZamboniDS, RoyCR, DietrichWF, VanceRE (2006) Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoS Pathog 2: e18.

44. WrightEK, GoodartSA, GrowneyJD, HadinotoV, EndrizziMG, et al. (2003) Naip5 affects host susceptibility to the intracellular pathogen Legionella pneumophila. Curr Biol 13: 27–36.

45. RubartelliA, CozzolinoF, TalioM, SitiaR (1990) A novel secretory pathway for interleukin-1 beta, a protein lacking a signal sequence. EMBO J 9: 1503–1510.

46. Schneider-PoetschT, JuJ, EylerDE, DangY, BhatS, et al. (2010) Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin. Nat Chem Biol 6: 209–217.

47. AgardNJ, BaskinJM, PrescherJA, LoA, BertozziCR (2006) A comparative study of bioorthogonal reactions with azides. ACS Chem Biol 1: 644–648.

48. RoyCR, BergerKH, IsbergRR (1998) Legionella pneumophila DotA protein is required for early phagosome trafficking decisions that occur within minutes of bacterial uptake. Mol Microbiol 28: 663–674.

49. SchmidtEK, ClavarinoG, CeppiM, PierreP (2009) SUnSET, a nonradioactive method to monitor protein synthesis. Nat Methods 6: 275–277.

50. LuJY, SadriN, SchneiderRJ (2006) Endotoxic shock in AUF1 knockout mice mediated by failure to degrade proinflammatory cytokine mRNAs. Genes Dev 20: 3174–3184.

51. RadwanM, StiefvaterR, GrunertT, SharifO, MillerI, et al. (2010) Tyrosine kinase 2 controls IL-1ss production at the translational level. J Immunol 185: 3544–3553.

52. ShawG, KamenR (1986) A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46: 659–667.

53. PalanisamyV, JakymiwA, Van TubergenEA, D'SilvaNJ, KirkwoodKL (2012) Control of cytokine mRNA expression by RNA-binding proteins and microRNAs. J Dent Res 91: 651–658.

54. DinarelloCA (1992) Dissociation of transcription from translation of human IL-1 beta: induction of steady state mRNA by adherence or recombinant C5a in the absence of translation. Proc Soc Exp Biol Med 200: 228–232.

55. HinnebuschAG (2005) Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol 59: 407–450.

56. VattemKM, WekRC (2004) Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci U S A 101: 11269–11274.

57. JorgensenR, WangY, VisschedykD, MerrillAR (2008) The nature and character of the transition state for the ADP-ribosyltransferase reaction. EMBO Rep 9: 802–809.

58. BergerKH, IsbergRR (1993) Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Mol Microbiol 7: 7–19.

59. SolomonJM, RupperA, CardelliJA, IsbergRR (2000) Intracellular growth of Legionella pneumophila in Dictyostelium discoideum, a system for genetic analysis of host-pathogen interactions. Infect Immun 68: 2939–2947.

60. SwansonMS, IsbergRR (1995) Association of Legionella pneumophila with the macrophage endoplasmic reticulum. Infect Immun 63: 3609–3620.

61. FeeleyJC, GibsonRJ, GormanGW, LangfordNC, RasheedJK, et al. (1979) Charcoal-yeast extract agar: primary isolation medium for Legionella pneumophila. J Clin Microbiol 10: 437–441.

62. AlanizRC, CummingsLA, BergmanMA, Rassoulian-BarrettSL, CooksonBT (2006) Salmonella typhimurium coordinately regulates FliC location and reduces dendritic cell activation and antigen presentation to CD4+ T cells. J Immunol 177: 3983–3993.

63. CreaseyEA, IsbergRR (2012) The protein SdhA maintains the integrity of the Legionella-containing vacuole. Proc Natl Acad Sci U S A 109: 3481–3486.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#