#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Syk Signaling in Dendritic Cells Orchestrates Innate Resistance to Systemic Fungal Infection


Multiple cell types bearing a vast array of immune receptors with different modes of signaling ensure that the host response to infection is both robust and reliable. For this reason, loss of a single signaling pathway in a given cell type is often not enough to impact host resistance. Here, we find, surprisingly, that this is not the case in a mouse model of systemic fungal infection with Candida albicans. We show that a single kinase (Syk) in a single cell type (dendritic cells, DCs) coordinates the entire host resistance network. We highlight Syk-dependent production of IL-23p19 by DCs as the key to protection and show that IL-23p19 acts on another white blood cell type, NK cells, to specifically induce production of another mediator, GM-CSF. The latter is key for yet another cell, the neutrophil, to be mobilized into action and kill Candida organisms. This study places DCs, best known for their role in priming T cells, at the center of a cellular relay of innate immunity to fungal infection. It highlights key nodes of antifungal immunity that could be targeted in combination with antifungal drugs to provide new ways to treat patients with fungal sepsis, who generally have poor outcomes.


Vyšlo v časopise: Syk Signaling in Dendritic Cells Orchestrates Innate Resistance to Systemic Fungal Infection. PLoS Pathog 10(7): e32767. doi:10.1371/journal.ppat.1004276
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004276

Souhrn

Multiple cell types bearing a vast array of immune receptors with different modes of signaling ensure that the host response to infection is both robust and reliable. For this reason, loss of a single signaling pathway in a given cell type is often not enough to impact host resistance. Here, we find, surprisingly, that this is not the case in a mouse model of systemic fungal infection with Candida albicans. We show that a single kinase (Syk) in a single cell type (dendritic cells, DCs) coordinates the entire host resistance network. We highlight Syk-dependent production of IL-23p19 by DCs as the key to protection and show that IL-23p19 acts on another white blood cell type, NK cells, to specifically induce production of another mediator, GM-CSF. The latter is key for yet another cell, the neutrophil, to be mobilized into action and kill Candida organisms. This study places DCs, best known for their role in priming T cells, at the center of a cellular relay of innate immunity to fungal infection. It highlights key nodes of antifungal immunity that could be targeted in combination with antifungal drugs to provide new ways to treat patients with fungal sepsis, who generally have poor outcomes.


Zdroje

1. LionakisMS, NeteaMG (2013) Candida and host determinants of susceptibility to invasive candidiasis. PLoS Pathog 9: e1003079 doi:10.1371/journal.ppat.1003079

2. LehnerT (1964) Systemic Candidiasis And Renal Involvement. Lancet 1: 1414–1416.

3. BrownGD, DenningDW, GowNAR, LevitzSM, NeteaMG, et al. (2012) Hidden killers: human fungal infections. Sci Transl Med 4: 165rv13 doi:10.1126/scitranslmed.3004404

4. BellocchioS, MontagnoliC, BozzaS, GazianoR, RossiG, et al. (2004) The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J Immunol 172: 3059–3069.

5. VillamónE, GozalboD, RoigP, O'ConnorJE, FradeliziD, et al. (2004) Toll-like receptor-2 is essential in murine defenses against Candida albicans infections. Microbes Infect 6: 1–7.

6. GrossO, PoeckH, BscheiderM, DostertC, HannesschlägerN, et al. (2009) Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459: 433–436 doi:10.1038/nature07965

7. HiseAG, TomalkaJ, GanesanS, PatelK, HallBA, et al. (2009) An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe 5: 487–497 doi:10.1016/j.chom.2009.05.002

8. MencacciA, BacciA, CenciE, MontagnoliC, FiorucciS, et al. (2000) Interleukin 18 restores defective Th1 immunity to Candida albicans in caspase 1-deficient mice. Infect Immun 68: 5126–5131.

9. NeteaMG, StuytRJL, KimS-H, van der MeerJWM, KullbergB-J, et al. (2002) The role of endogenous interleukin (IL)-18, IL-12, IL-1beta, and tumor necrosis factor-alpha in the production of interferon-gamma induced by Candida albicans in human whole-blood cultures. J Infect Dis 185: 963–970 doi:10.1086/339410

10. StuytRJL, NeteaMG, VerschuerenI, FantuzziG, DinarelloCA, et al. (2002) Role of interleukin-18 in host defense against disseminated Candida albicans infection. Infect Immun 70: 3284–3286.

11. Bernuth vonH, PicardC, JinZ, PanklaR, XiaoH, et al. (2008) Pyogenic bacterial infections in humans with MyD88 deficiency. Science 321: 691–696 doi:10.1126/science.1158298

12. PlantingaTS, JohnsonMD, ScottWK, van de VosseE, Velez EdwardsDR, et al. (2012) Toll-like receptor 1 polymorphisms increase susceptibility to candidemia. J Infect Dis 205: 934–943 doi:10.1093/infdis/jir867

13. Van der GraafCAA, NeteaMG, MorréSA, Heijer DenM, VerweijPE, et al. (2006) Toll-like receptor 4 Asp299Gly/Thr399Ile polymorphisms are a risk factor for Candida bloodstream infection. Eur Cytokine Netw 17: 29–34.

14. WoehrleT, DuW, GoetzA, HsuH-Y, JoosTO, et al. (2008) Pathogen specific cytokine release reveals an effect of TLR2 Arg753Gln during Candida sepsis in humans. Cytokine 41: 322–329 doi:10.1016/j.cyto.2007.12.006

15. SaijoS, IkedaS, YamabeK, KakutaS, IshigameH, et al. (2010) Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity 32: 681–691 doi:10.1016/j.immuni.2010.05.001

16. WellsCA, Salvage-JonesJA, LiX, HitchensK, ButcherS, et al. (2008) The macrophage-inducible C-type lectin, mincle, is an essential component of the innate immune response to Candida albicans. J Immunol 180: 7404–7413.

17. ZhuL-L, ZhaoX-Q, JiangC, YouY, ChenX-P, et al. (2013) C-Type Lectin Receptors Dectin-3 and Dectin-2 Form a Heterodimeric Pattern-Recognition Receptor for Host Defense against Fungal Infection. Immunity 39: 324–334 doi:10.1016/j.immuni.2013.05.017

18. TaylorPR, TsoniSV, WillmentJA, DennehyKM, RosasM, et al. (2007) Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol 8: 31–38 doi:10.1038/ni1408

19. FerwerdaB, FerwerdaG, PlantingaTS, WillmentJA, van SprielAB, et al. (2009) Human dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med 361: 1760–1767 doi:10.1056/NEJMoa0901053

20. RogersNC, SlackEC, EdwardsAD, NolteMA, SchulzO, et al. (2005) Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22: 507–517 doi:10.1016/j.immuni.2005.03.004

21. RobinsonMJ, OsorioF, RosasM, FreitasRP, SchweighofferE, et al. (2009) Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J Exp Med 206: 2037–2051 doi:10.1084/jem.20082818

22. OsorioF, Reis e SousaC (2011) Myeloid C-type Lectin Receptors in Pathogen Recognition and Host Defense. Immunity 34: 651–664 doi:10.1016/j.immuni.2011.05.001

23. YamasakiS, IshikawaE, SakumaM, HaraH, OgataK, et al. (2008) Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat Immunol 9: 1179–1188 doi:10.1038/ni.1651

24. GrossO, GewiesA, FingerK, SchäferM, SparwasserT, et al. (2006) Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442: 651–656 doi:10.1038/nature04926

25. GoodridgeHS, SimmonsRM, UnderhillDM (2007) Dectin-1 stimulation by Candida albicans yeast or zymosan triggers NFAT activation in macrophages and dendritic cells. J Immunol 178: 3107–3115.

26. SlackEC, RobinsonMJ, Hernanz-FalcónP, BrownGD, WilliamsDL, et al. (2007) Syk-dependent ERK activation regulates IL-2 and IL-10 production by DC stimulated with zymosan. Eur J Immunol 37: 1600–1612 doi:10.1002/eji.200636830

27. LeibundGut-LandmannS, GrossO, RobinsonMJ, OsorioF, SlackEC, et al. (2007) Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol 8: 630–638 doi:10.1038/ni1460

28. DrewniakA, GazendamRP, ToolATJ, van HoudtM, JansenMH, et al. (2013) Invasive fungal infection and impaired neutrophil killing in human CARD9 deficiency. Blood 121: 2385–2392 doi:10.1182/blood-2012-08-450551

29. GlockerE-O, HennigsA, NabaviM, SchäfferAA, WoellnerC, et al. (2009) A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med 361: 1727–1735 doi:10.1056/NEJMoa0810719

30. CypowyjS, PicardC, MaródiL, CasanovaJ-L, PuelA (2012) Immunity to infection in IL-17-deficient mice and humans. Eur J Immunol 42: 2246–2254 doi:10.1002/eji.201242605

31. GreenblattMB, AliprantisA, HuB, GlimcherLH (2010) Calcineurin regulates innate antifungal immunity in neutrophils. J Exp Med 207: 923–931 doi:10.1084/jem.20092531

32. HornDL, NeofytosD, AnaissieEJ, FishmanJA, SteinbachWJ, et al. (2009) Epidemiology and outcomes of candidemia in 2019 patients: data from the prospective antifungal therapy alliance registry. Clin Infect Dis 48: 1695–1703 doi:10.1086/599039

33. QianQ, JutilaMA, Van RooijenN, CutlerJE (1994) Elimination of mouse splenic macrophages correlates with increased susceptibility to experimental disseminated candidiasis. J Immunol 152: 5000–5008.

34. QuintinJ, SaeedS, MartensJHA, Giamarellos-BourboulisEJ, IfrimDC, et al. (2012) Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe 12: 223–232 doi:10.1016/j.chom.2012.06.006

35. LionakisMS, SwamydasM, FischerBG, PlantingaTS, JohnsonMD, et al. (2013) CX3CR1-dependent renal macrophage survival promotes Candida control and host survival. J Clin Invest 123: 5035–5051 doi:10.1172/JCI71307

36. NgoLY, KasaharaS, KumasakaDK, KnoblaughSE, JhingranA, et al. (2013) Inflammatory monocytes mediate early and organ-specific innate defense during systemic candidiasis. J Infect Dis 209: 109–119 doi:10.1093/infdis/jit413

37. BärE, WhitneyPG, MoorK, Reis e SousaC, LeibundGut-LandmannS (2014) IL-17 Regulates Systemic Fungal Immunity by Controlling the Functional Competence of NK Cells. Immunity 40: 117–127 doi:10.1016/j.immuni.2013.12.002

38. MorrisonBE, ParkSJ, MooneyJM, MehradB (2003) Chemokine-mediated recruitment of NK cells is a critical host defense mechanism in invasive aspergillosis. J Clin Invest 112: 1862–1870 doi:10.1172/JCI18125

39. BrownGD (2011) Innate antifungal immunity: the key role of phagocytes. Annu Rev Immunol 29: 1–21 doi:10.1146/annurev-immunol-030409-101229

40. SaijoK, SchmedtC, SuI-H, KarasuyamaH, LowellCA, et al. (2003) Essential role of Src-family protein tyrosine kinases in NF-kappaB activation during B cell development. Nat Immunol 4: 274–279 doi:10.1038/ni893

41. HouB, ReizisB, DeFrancoAL (2008) Toll-like receptors activate innate and adaptive immunity by using dendritic cell-intrinsic and -extrinsic mechanisms. Immunity 29: 272–282 doi:10.1016/j.immuni.2008.05.016

42. CatonML, Smith-RaskaMR, ReizisB (2007) Notch-RBP-J signaling controls the homeostasis of CD8− dendritic cells in the spleen. J Exp Med 204: 1653–1664 doi:10.1084/jem.20062648

43. LionakisMS, LimJK, LeeC-CR, MurphyPM (2011) Organ-specific innate immune responses in a mouse model of invasive candidiasis. Journal of innate immunity 3: 180–199 doi:10.1159/000321157

44. SchramlBU, van BlijswijkJ, ZelenayS, WhitneyPG, FilbyA, et al. (2013) Genetic Tracing via DNGR-1 Expression History Defines Dendritic Cells as a Hematopoietic Lineage. Cell 154: 843–858 doi:10.1016/j.cell.2013.07.014

45. SanchoD, JoffreOP, KellerAM, RogersNC, MartínezD, et al. (2009) Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 458: 899–903 doi:10.1038/nature07750

46. FulurijaA, AshmanRB, PapadimitriouJM (1996) Neutrophil depletion increases susceptibility to systemic and vaginal candidiasis in mice, and reveals differences between brain and kidney in mechanisms of host resistance. Microbiology (Reading, Engl) 142 (Pt 12) 3487–3496.

47. BorregaardN, CowlandJB (1997) Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89: 3503–3521.

48. KolaczkowskaE, KubesP (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13: 159–175 doi:10.1038/nri3399

49. SkrzypekF, CenciE, PietrellaD, RachiniA, BistoniF, et al. (2009) Dectin-1 is required for human dendritic cells to initiate immune response to Candida albicans through Syk activation. Microbes Infect 11: 661–670 doi:10.1016/j.micinf.2009.03.010

50. LordBI, MolineuxG, PojdaZ, SouzaLM, MermodJJ, et al. (1991) Myeloid cell kinetics in mice treated with recombinant interleukin-3, granulocyte colony-stimulating factor (CSF), or granulocyte-macrophage CSF in vivo. Blood 77: 2154–2159.

51. WeisbartRH, KwanL, GoldeDW, GassonJC (1987) Human GM-CSF primes neutrophils for enhanced oxidative metabolism in response to the major physiological chemoattractants. Blood 69: 18–21.

52. LopezAF, NicolaNA, BurgessAW, MetcalfD, BattyeFL, et al. (1983) Activation of granulocyte cytotoxic function by purified mouse colony-stimulating factors. J Immunol 131: 2983–2988.

53. DejimaT, ShibataK, YamadaH, HaraH, IwakuraY, et al. (2011) Protective role of naturally occurring interleukin-17A-producing γδ T cells in the lung at the early stage of systemic candidiasis in mice. Infect Immun 79: 4503–4510 doi:10.1128/IAI.05799-11

54. LionakisMS, FischerBG, LimJK, SwamydasM, WanW, et al. (2012) Chemokine receptor Ccr1 drives neutrophil-mediated kidney immunopathology and mortality in invasive candidiasis. PLoS Pathog 8: e1002865 doi:10.1371/journal.ppat.1002865

55. De LucaA, ZelanteT, D'AngeloC, ZagarellaS, FallarinoF, et al. (2010) IL-22 defines a novel immune pathway of antifungal resistance. Mucosal Immunol 3: 361–373 doi:10.1038/mi.2010.22

56. KagamiS, RizzoHL, KurtzSE, MillerLS, BlauveltA (2010) IL-23 and IL-17A, but not IL-12 and IL-22, are required for optimal skin host defense against Candida albicans. J Immunol 185: 5453–5462 doi:10.4049/jimmunol.1001153

57. ParhamC, ChiricaM, TimansJ, VaisbergE, TravisM, et al. (2002) A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol 168: 5699–5708.

58. ChenZ, TatoCM, MuulL, LaurenceA, O'SheaJJ (2007) Distinct regulation of interleukin-17 in human T helper lymphocytes. Arthritis and rheumatism 56: 2936–2946 Available: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=17763419&retmode=ref&cmd=prlinks.

59. KawakamiT, LichtnekertJ, ThompsonLJ, KarnaP, BouabeH, et al. (2013) Resident renal mononuclear phagocytes comprise five discrete populations with distinct phenotypes and functions. J Immunol 191: 3358–3372 doi:10.4049/jimmunol.1300342

60. NelsonPJ, ReesAJ, GriffinMD, HughesJ, KurtsC, et al. (2012) The renal mononuclear phagocytic system. J Am Soc Nephrol 23: 194–203 doi:10.1681/ASN.2011070680

61. SteinmanRM, IdoyagaJ (2010) Features of the dendritic cell lineage. Immunol Rev 234: 5–17 doi:10.1111/j.0105-2896.2009.00888.x

62. JakubzickC, BogunovicM, BonitoAJ, KuanEL, MeradM, et al. (2008) Lymph-migrating, tissue-derived dendritic cells are minor constituents within steady-state lymph nodes. J Exp Med 205: 2839–2850 doi:10.1084/jem.20081430

63. TittelAP, HeuserC, OhligerC, LlantoC, YonaS, et al. (2012) Functionally relevant neutrophilia in CD11c diphtheria toxin receptor transgenic mice. Nature methods 9: 385–390 doi:10.1038/nmeth.1905

64. KerriganAM, BrownGD (2011) Syk-coupled C-type lectins in immunity. Trends Immunol 32: 151–156 doi:10.1016/j.it.2011.01.002

65. VillamónE, GozalboD, RoigP, MurcianoC, O'ConnorJE, et al. (2004) Myeloid differentiation factor 88 (MyD88) is required for murine resistance to Candida albicans and is critically involved in Candida -induced production of cytokines. Eur Cytokine Netw 15: 263–271.

66. BodeyGP, MardaniM, HannaHA, BoktourM, AbbasJ, et al. (2002) The epidemiology of Candida glabrata and Candida albicans fungemia in immunocompromised patients with cancer. Am J Med 112: 380–385.

67. RomaniL, MencacciA, CenciE, SpaccapeloR, ToniattiC, et al. (1996) Impaired neutrophil response and CD4+ T helper cell 1 development in interleukin 6-deficient mice infected with Candida albicans. J Exp Med 183: 1345–1355.

68. van EnckevortFH, NeteaMG, HermusAR, SweepCG, MeisJF, et al. (1999) Increased susceptibility to systemic candidiasis in interleukin-6 deficient mice. Med Mycol 37: 419–426.

69. SingerII, ScottS, KawkaDW, KazazisDM (1989) Adhesomes: specific granules containing receptors for laminin, C3bi/fibrinogen, fibronectin, and vitronectin in human polymorphonuclear leukocytes and monocytes. J Cell Biol 109: 3169–3182.

70. WeiS, LiuJH, Epling-BurnettePK, GameroAM, UsseryD, et al. (1996) Critical role of Lyn kinase in inhibition of neutrophil apoptosis by granulocyte-macrophage colony-stimulating factor. J Immunol 157: 5155–5162.

71. KobayashiSD, VoyichJM, WhitneyAR, DeLeoFR (2005) Spontaneous neutrophil apoptosis and regulation of cell survival by granulocyte macrophage-colony stimulating factor. J Leukoc Biol 78: 1408–1418 doi:10.1189/jlb.0605289

72. YasuiK, SekiguchiY, IchikawaM, NagumoH, YamazakiT, et al. (2002) Granulocyte macrophage-colony stimulating factor delays neutrophil apoptosis and primes its function through Ia-type phosphoinositide 3-kinase. J Leukoc Biol 72: 1020–1026.

73. ShaharE, KriboyN, PollackS (1995) White cell enhancement in the treatment of severe candidosis. Lancet 346: 974–975.

74. Nicolatou-GalitisO, DardoufasK, MarkoulatosP, Sotiropoulou-LontouA, KyprianouK, et al. (2001) Oral pseudomembranous candidiasis, herpes simplex virus-1 infection, and oral mucositis in head and neck cancer patients receiving radiotherapy and granulocyte-macrophage colony-stimulating factor (GM-CSF) mouthwash. J Oral Pathol Med 30: 471–480.

75. CostantiniC, MichelettiA, CalzettiF, PerbelliniO, PizzoloG, et al. (2010) Neutrophil activation and survival are modulated by interaction with NK cells. Int Immunol 22: 827–838 doi:10.1093/intimm/dxq434

76. BhatnagarN, HongHS, KrishnaswamyJK, HaghikiaA, BehrensGM, et al. (2010) Cytokine-activated NK cells inhibit PMN apoptosis and preserve their functional capacity. Blood 116: 1308–1316 doi:10.1182/blood-2010-01-264903

77. OrangeJS (2013) Natural killer cell deficiency. J Allergy Clin Immunol 132: 515–25–quiz526 Available: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=23993353&retmode=ref&cmd=prlinks.

78. RomaniL, MencacciA, CenciE, SpaccapeloR, SchiaffellaE, et al. (1993) Natural killer cells do not play a dominant role in CD4+ subset differentiation in Candida albicans-infected mice. Infect Immun 61: 3769–3774 Available: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=8359898&retmode=ref&cmd=prlinks.

79. LaouarY, SutterwalaFS, GorelikL, FlavellRA (2005) Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma. Nat Immunol 6: 600–607 doi:10.1038/ni1197

80. NewmanKC, RileyEM (2007) Whatever turns you on: accessory-cell-dependent activation of NK cells by pathogens. Nat Rev Immunol 7: 279–291 doi:10.1038/nri2057

81. ChijiokeO, MünzC (2013) Dendritic Cell Derived Cytokines in Human Natural Killer Cell Differentiation and Activation. Front Immunol 4: 365 doi:10.3389/fimmu.2013.00365

82. NeteaMG, VonkAG, van den HovenM, VerschuerenI, JoostenLA, et al. (2003) Differential role of IL-18 and IL-12 in the host defense against disseminated Candida albicans infection. Eur J Immunol 33: 3409–3417 doi:10.1002/eji.200323737

83. FarahCS, HuY, RimintonS, AshmanRB (2006) Distinct roles for interleukin-12p40 and tumour necrosis factor in resistance to oral candidiasis defined by gene-targeting. Oral Microbiol Immunol 21: 252–255 doi:10.1111/j.1399-302X.2006.00288.x

84. AdachiO, KawaiT, TakedaK, MatsumotoM, TsutsuiH, et al. (1998) Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9: 143–150.

85. GhilardiN, KljavinN, ChenQ, LucasS, GurneyAL, et al. (2004) Compromised humoral and delayed-type hypersensitivity responses in IL-23-deficient mice. J Immunol 172: 2827–2833.

86. BeckerC, DornhoffH, NeufertC, FantiniMC, WirtzS, et al. (2006) Cutting edge: IL-23 cross-regulates IL-12 production in T cell-dependent experimental colitis. J Immunol 177: 2760–2764.

87. BarelleCJ, MansonCL, MacCallumDM, OddsFC, GowNAR, et al. (2004) GFP as a quantitative reporter of gene regulation in Candida albicans. Yeast 21: 333–340 doi:10.1002/yea.1099

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#