#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Novel Drosophila Viruses Encode Host-Specific Suppressors of RNAi


Viruses and their hosts can engage in an evolutionary arms race. Viruses may select for hosts with more effective immune responses, whereas the immune response of the host may select for viruses that evade the immune system. These viral counter-defenses may in turn drive adaptations in host immune genes. A potential outcome of this perpetual cycle is that the interaction between virus and host becomes more specific. In insects, the host antiviral RNAi machinery exerts strong evolutionary pressure that has led to the evolution of viral proteins that can antagonize the RNAi response. We have identified novel viruses that infect different fruit fly species and we show that the RNAi suppressor proteins of these viruses can be specific to their host. Furthermore, we show that these proteins can enhance virus replication in a host-specific manner. These results are in line with the hypothesis that virus-host co-evolution shapes the genomes of both virus and host. Moreover, our results suggest that RNAi suppressor proteins have the potential to determine host specificity of viruses.


Vyšlo v časopise: Novel Drosophila Viruses Encode Host-Specific Suppressors of RNAi. PLoS Pathog 10(7): e32767. doi:10.1371/journal.ppat.1004256
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004256

Souhrn

Viruses and their hosts can engage in an evolutionary arms race. Viruses may select for hosts with more effective immune responses, whereas the immune response of the host may select for viruses that evade the immune system. These viral counter-defenses may in turn drive adaptations in host immune genes. A potential outcome of this perpetual cycle is that the interaction between virus and host becomes more specific. In insects, the host antiviral RNAi machinery exerts strong evolutionary pressure that has led to the evolution of viral proteins that can antagonize the RNAi response. We have identified novel viruses that infect different fruit fly species and we show that the RNAi suppressor proteins of these viruses can be specific to their host. Furthermore, we show that these proteins can enhance virus replication in a host-specific manner. These results are in line with the hypothesis that virus-host co-evolution shapes the genomes of both virus and host. Moreover, our results suggest that RNAi suppressor proteins have the potential to determine host specificity of viruses.


Zdroje

1. RandallRE, GoodbournS (2008) Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 89: 1–47.

2. LilleyBN, PloeghHL (2005) Viral modulation of antigen presentation: manipulation of cellular targets in the ER and beyond. Immunol Rev 207: 126–144.

3. ComptonAA, HirschVM, EmermanM (2012) The host restriction factor APOBEC3G and retroviral Vif protein coevolve due to ongoing genetic conflict. Cell Host Microbe 11: 91–98.

4. DingSW (2010) RNA-based antiviral immunity. Nat Rev Immunol 10: 632–644.

5. FelixMA, AsheA, PiffarettiJ, WuG, NuezI, et al. (2011) Natural and experimental infection of Caenorhabditis nematodes by novel viruses related to nodaviruses. PLoS Biol 9: e1000586.

6. NicolasFE, Torres-MartinezS, Ruiz-VazquezRM (2013) Loss and retention of RNA interference in fungi and parasites. PLoS Pathog 9: e1003089.

7. van MierloJT, van CleefKW, van RijRP (2011) Defense and counterdefense in the RNAi-based antiviral immune system in insects. Methods Mol Biol 721: 3–22.

8. LiY, LuJ, HanY, FanX, DingSW (2013) RNA interference functions as an antiviral immunity mechanism in mammals. Science 342: 231–234.

9. MaillardPV, CiaudoC, MarchaisA, LiY, JayF, et al. (2013) Antiviral RNA interference in mammalian cells. Science 342: 235–238.

10. WeberF, WagnerV, RasmussenSB, HartmannR, PaludanSR (2006) Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J Virol 80: 5059–5064.

11. AliyariR, WuQ, LiHW, WangXH, LiF, et al. (2008) Mechanism of induction and suppression of antiviral immunity directed by virus-derived small RNAs in Drosophila. Cell Host Microbe 4: 387–397.

12. FlyntA, LiuN, MartinR, LaiEC (2009) Dicing of viral replication intermediates during silencing of latent Drosophila viruses. Proc Natl Acad Sci U S A 106: 5270–5275.

13. SabinLR, ZhengQ, ThekkatP, YangJ, HannonGJ, et al. (2013) Dicer-2 processes diverse viral RNA species. PLoS One 8: e55458.

14. van MierloJT, BronkhorstAW, OverheulGJ, SadanandanSA, EkstromJO, et al. (2012) Convergent evolution of argonaute-2 slicer antagonism in two distinct insect RNA viruses. PLoS Pathogens 8: e1002872.

15. WuQ, LuoY, LuR, LauN, LaiEC, et al. (2010) Virus discovery by deep sequencing and assembly of virus-derived small silencing RNAs. Proc Natl Acad Sci U S A 107: 1606–1611.

16. BrackneyDE, BeaneJE, EbelGD (2009) RNAi targeting of West Nile virus in mosquito midguts promotes virus diversification. PLoS Pathog 5: e1000502.

17. BronkhorstAW, van CleefKW, VodovarN, InceIA, BlancH, et al. (2012) The DNA virus Invertebrate iridescent virus 6 is a target of the Drosophila RNAi machinery. Proc Natl Acad Sci U S A 109: E3604–3613.

18. HessAM, PrasadAN, PtitsynA, EbelGD, OlsonKE, et al. (2011) Small RNA profiling of Dengue virus-mosquito interactions implicates the PIWI RNA pathway in anti-viral defense. BMC Microbiol 11: 45.

19. LegerP, LaraE, JaglaB, SismeiroO, MansurogluZ, et al. (2013) Dicer-2- and Piwi-mediated RNA interference in Rift Valley fever virus-infected mosquito cells. J Virol 87: 1631–1648.

20. MylesKM, MorazzaniEM, AdelmanZN (2009) Origins of alphavirus-derived small RNAs in mosquitoes. RNA Biol 6: 387–391.

21. MylesKM, WileyMR, MorazzaniEM, AdelmanZN (2008) Alphavirus-derived small RNAs modulate pathogenesis in disease vector mosquitoes. Proc Natl Acad Sci U S A 105: 19938–19943.

22. ScottJC, BrackneyDE, CampbellCL, Bondu-HawkinsV, HjelleB, et al. (2010) Comparison of dengue virus type 2-specific small RNAs from RNA interference-competent and -incompetent mosquito cells. PLoS Negl Trop Dis 4: e848.

23. SiuRW, FragkoudisR, SimmondsP, DonaldCL, Chase-ToppingME, et al. (2011) Antiviral RNA interference responses induced by Semliki Forest virus infection of mosquito cells: characterization, origin, and frequency-dependent functions of virus-derived small interfering RNAs. J Virol 85: 2907–2917.

24. LiuQ, RandTA, KalidasS, DuF, KimHE, et al. (2003) R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301: 1921–1925.

25. CzechB, ZhouR, ErlichY, BrenneckeJ, BinariR, et al. (2009) Hierarchical rules for Argonaute loading in Drosophila. Mol Cell 36: 445–456.

26. MatrangaC, TomariY, ShinC, BartelDP, ZamorePD (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123: 607–620.

27. MiyoshiK, TsukumoH, NagamiT, SiomiH, SiomiMC (2005) Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev 19: 2837–2848.

28. RandTA, PetersenS, DuF, WangX (2005) Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123: 621–629.

29. BronkhorstAW, van RijRP (2014) The long and short of antiviral defense: small RNA-based immunity in insects. Curr Opin Virol 7C: 19–28.

30. ChaoJA, LeeJH, ChapadosBR, DeblerEW, SchneemannA, et al. (2005) Dual modes of RNA-silencing suppression by Flock House virus protein B2. Nat Struct Mol Biol 12: 952–957.

31. GonzalezI, MartinezL, RakitinaDV, LewseyMG, AtencioFA, et al. (2010) Cucumber mosaic virus 2b protein subcellular targets and interactions: their significance to RNA silencing suppressor activity. Mol Plant Microbe Interact 23: 294–303.

32. GotoK, KoboriT, KosakaY, NatsuakiT, MasutaC (2007) Characterization of silencing suppressor 2b of cucumber mosaic virus based on examination of its small RNA-binding abilities. Plant Cell Physiol 48: 1050–1060.

33. HemmesH, LakatosL, GoldbachR, BurgyanJ, PrinsM (2007) The NS3 protein of Rice hoja blanca tenuivirus suppresses RNA silencing in plant and insect hosts by efficiently binding both siRNAs and miRNAs. Rna 13: 1079–1089.

34. LakatosL, SzittyaG, SilhavyD, BurgyanJ (2004) Molecular mechanism of RNA silencing suppression mediated by p19 protein of tombusviruses. EMBO J 23: 876–884.

35. LiHW, LiWX, DingSW (2002) Induction and suppression of RNA silencing by an animal virus. Science 296: 1319–1321.

36. MeraiZ, KerenyiZ, KerteszS, MagnaM, LakatosL, et al. (2006) Double-stranded RNA binding may be a general plant RNA viral strategy to suppress RNA silencing. J Virol 80: 5747–5756.

37. SilhavyD, MolnarA, LucioliA, SzittyaG, HornyikC, et al. (2002) A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide double-stranded RNAs. EMBO J 21: 3070–3080.

38. Van RijRP, SalehMC, BerryB, FooC, HoukA, et al. (2006) The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster. Genes Dev 20: 2985–2995.

39. AzevedoJ, GarciaD, PontierD, OhnesorgeS, YuA, et al. (2010) Argonaute quenching and global changes in Dicer homeostasis caused by a pathogen-encoded GW repeat protein. Genes Dev 24: 904–915.

40. BaumbergerN, TsaiCH, LieM, HaveckerE, BaulcombeDC (2007) The Polerovirus silencing suppressor P0 targets Argonaute proteins for degradation. Curr Biol 17: 1609–1614.

41. BortolamiolD, PazhouhandehM, MarroccoK, GenschikP, Ziegler-GraffV (2007) The Polerovirus F box protein P0 targets ARGONAUTE1 to suppress RNA silencing. Curr Biol 17: 1615–1621.

42. CsorbaT, LozsaR, HutvagnerG, BurgyanJ (2010) Polerovirus protein P0 prevents the assembly of small RNA-containing RISC complexes and leads to degradation of ARGONAUTE1. Plant J 62: 463–472.

43. NayakA, BerryB, TassettoM, KunitomiM, AcevedoA, et al. (2010) Cricket paralysis virus antagonizes Argonaute 2 to modulate antiviral defense in Drosophila. Nat Struct Mol Biol 17: 547–554.

44. ZhangX, YuanYR, PeiY, LinSS, TuschlT, et al. (2006) Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev 20: 3255–3268.

45. GinerA, LakatosL, Garcia-ChapaM, Lopez-MoyaJJ, BurgyanJ (2010) Viral protein inhibits RISC activity by argonaute binding through conserved WG/GW motifs. PLoS Pathog 6: e1000996.

46. DaughertyMD, MalikHS (2012) Rules of engagement: molecular insights from host-virus arms races. Annu Rev Genet 46: 677–700.

47. ObbardDJ, JigginsFM, HalliganDL, LittleTJ (2006) Natural selection drives extremely rapid evolution in antiviral RNAi genes. Curr Biol 16: 580–585.

48. KolaczkowskiB, HupaloDN, KernAD (2011) Recurrent adaptation in RNA interference genes across the Drosophila phylogeny. Mol Biol Evol 28: 1033–1042.

49. ObbardDJ, JigginsFM, BradshawNJ, LittleTJ (2011) Recent and recurrent selective sweeps of the antiviral RNAi gene Argonaute-2 in three species of Drosophila. Mol Biol Evol 28: 1043–1056.

50. ObbardDJ, GordonKH, BuckAH, JigginsFM (2009) The evolution of RNAi as a defence against viruses and transposable elements. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences 364: 99–115.

51. DunoyerP, LecellierCH, ParizottoEA, HimberC, VoinnetO (2004) Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell 16: 1235–1250.

52. SchnettlerE, HemmesH, GoldbachR, PrinsM (2008) The NS3 protein of rice hoja blanca virus suppresses RNA silencing in mammalian cells. J Gen Virol 89: 336–340.

53. LakatosL, CsorbaT, PantaleoV, ChapmanEJ, CarringtonJC, et al. (2006) Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. Embo J 25: 2768–2780.

54. LiWX, LiH, LuR, LiF, DusM, et al. (2004) Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. Proc Natl Acad Sci U S A 101: 1350–1355.

55. LichnerZ, SilhavyD, BurgyanJ (2003) Double-stranded RNA-binding proteins could suppress RNA interference-mediated antiviral defences. J Gen Virol 84: 975–980.

56. HabayebMS, EkengrenSK, HultmarkD (2006) Nora virus, a persistent virus in Drosophila, defines a new picorna-like virus family. J Gen Virol 87: 3045–3051.

57. EkstromJO, HabayebMS, SrivastavaV, KieselbachT, WingsleG, et al. (2011) Drosophila Nora virus capsid proteins differ from those of other picorna-like viruses. Virus Res 160: 51–58.

58. VirginHW, WherryEJ, AhmedR (2009) Redefining chronic viral infection. Cell 138: 30–50.

59. TorresL, AlmazanC, AyllonN, GalindoRC, Rosario-CruzR, et al. (2012) Identification of microorganisms in partially fed female horn flies, Haematobia irritans. Parasitol Res 111: 1391–1395.

60. OliveiraDC, HunterWB, NgJ, DesjardinsCA, DangPM, et al. (2010) Data mining cDNAs reveals three new single stranded RNA viruses in Nasonia (Hymenoptera: Pteromalidae). Insect Mol Biol 19 Suppl 1: 99–107.

61. YangZ (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24: 1586–1591.

62. RzhetskyA, NeiM (1994) Unbiased estimates of the number of nucleotide substitutions when substitution rate varies among different sites. J Mol Evol 38: 295–299.

63. SmithJM, SmithNH (1996) Synonymous nucleotide divergence: what is “saturation”? Genetics 142: 1033–1036.

64. CuellarWJ, TairoF, KreuzeJF, ValkonenJP (2008) Analysis of gene content in sweet potato chlorotic stunt virus RNA1 reveals the presence of the p22 RNA silencing suppressor in only a few isolates: implications for viral evolution and synergism. J Gen Virol 89: 573–582.

65. ValliA, Martin-HernandezAM, Lopez-MoyaJJ, GarciaJA (2006) RNA silencing suppression by a second copy of the P1 serine protease of Cucumber vein yellowing ipomovirus, a member of the family Potyviridae that lacks the cysteine protease HCPro. J Virol 80: 10055–10063.

66. ValliA, DujovnyG, GarciaJA (2008) Protease activity, self interaction, and small interfering RNA binding of the silencing suppressor p1b from cucumber vein yellowing ipomovirus. J Virol 82: 974–986.

67. HaleyB, TangG, ZamorePD (2003) In vitro analysis of RNA interference in Drosophila melanogaster. Methods 30: 330–336.

68. HainD, BettencourtBR, OkamuraK, CsorbaT, MeyerW, et al. (2010) Natural variation of the amino-terminal glutamine-rich domain in Drosophila argonaute2 is not associated with developmental defects. PLoS One 5: e15264.

69. SalehMC, TassettoM, Van RijRP, GoicB, GaussonV, et al. (2009) Antiviral immunity in Drosophila requires systemic RNA interference spread. Nature 458: 346–350.

70. DemoginesA, AbrahamJ, ChoeH, FarzanM, SawyerSL (2013) Dual host-virus arms races shape an essential housekeeping protein. PLoS Biol 11: e1001571.

71. BegunDJ, WhitleyP (2000) Adaptive evolution of relish, a Drosophila NF-kappaB/IkappaB protein. Genetics 154: 1231–1238.

72. BulmerMS, CrozierRH (2006) Variation in positive selection in termite GNBPs and Relish. Mol Biol Evol 23: 317–326.

73. LittleTJ, ColbourneJK, CreaseTJ (2004) Molecular evolution of daphnia immunity genes: polymorphism in a gram-negative binding protein gene and an alpha-2-macroglobulin gene. J Mol Evol 59: 498–506.

74. LongdonB, WilfertL, Osei-PokuJ, CagneyH, ObbardDJ, et al. (2011) Host-switching by a vertically transmitted rhabdovirus in Drosophila. Biol Lett 7: 747–750.

75. LiF, DingSW (2006) Virus counterdefense: diverse strategies for evading the RNA-silencing immunity. Annu Rev Microbiol 60: 503–531.

76. SmedsL, KunstnerA (2011) ConDeTri–a content dependent read trimmer for Illumina data. PLoS One 6: e26314.

77. GrabherrMG, HaasBJ, YassourM, LevinJZ, ThompsonDA, et al. (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29: 644–652.

78. LunterG, GoodsonM (2011) Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Genome Res 21: 936–939.

79. PascualL, JakubowskaAK, BlancaJM, CanizaresJ, FerreJ, et al. (2012) The transcriptome of Spodoptera exigua larvae exposed to different types of microbes. Insect Biochem Mol Biol 42: 557–570.

80. LiZQ, ZhangS, MaY, LuoJY, WangCY, et al. (2013) First Transcriptome and Digital Gene Expression Analysis in Neuroptera with an Emphasis on Chemoreception Genes in (Rambur). PLoS One 8: e67151.

81. GoecksJ, MortimerNT, MobleyJA, BowersockGJ, TaylorJ, et al. (2013) Integrative approach reveals composition of endoparasitoid wasp venoms. PLoS One 8: e64125.

82. HuelsenbeckJP, RonquistF (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755.

83. GuindonS, DufayardJF, LefortV, AnisimovaM, HordijkW, et al. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59: 307–321.

84. WhelanS, GoldmanN (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18: 691–699.

85. LiWH (1993) Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J Mol Evol 36: 96–99.

86. IwasakiS, KobayashiM, YodaM, SakaguchiY, KatsumaS, et al. (2010) Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Molecular Cell 39: 292–299.

87. ZhouR, HottaI, DenliAM, HongP, PerrimonN, et al. (2008) Comparative analysis of argonaute-dependent small RNA pathways in Drosophila. Mol Cell 32: 592–599.

88. van CleefKW, van MierloJT, van den BeekM, Van RijRP (2011) Identification of viral suppressors of RNAi by a reporter assay in Drosophila S2 cell culture. Methods in Molecular Biology 721: 201–213.

89. HahnCS, HahnYS, BracialeTJ, RiceCM (1992) Infectious Sindbis virus transient expression vectors for studying antigen processing and presentation. Proceedings of the National Academy of Sciences of the United States of America 89: 2679–2683.

90. VodovarN, BronkhorstAW, van CleefKW, MiesenP, BlancH, et al. (2012) Arbovirus-derived piRNAs exhibit a ping-pong signature in mosquito cells. PLoS One 7: e30861.

91. TeixeiraL, FerreiraA, AshburnerM (2008) The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol 6: e2.

92. ObadiaB, SalehMC (2011) dsRNA uptake in adult Drosophila. Methods in Molecular Biology 721: 253–263.

93. LivakKJ, SchmittgenTD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#