#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

SAS-1 Is a C2 Domain Protein Critical for Centriole Integrity in


Centrioles are microtubule-based organelles critical for forming cilia, flagella and centrosomes. Centrioles are very stable, but how such stability is ensured is poorly understood. We identified sas-1 as a component that contributes to centriole stability in C. elegans. Centrioles that lack sas-1 function loose their integrity, and our analysis reveals that sas-1 is particularly important for sperm-derived centrioles. Moreover, we show that SAS-1 binds and stabilizes microtubules in human cells, together leading us to propose that SAS-1 acts by stabilizing centriolar microtubules. We identify C2CD3 as a human homolog of SAS-1. C2CD3 is needed for the presence of the distal part of centrioles in human cells, and we thus propose that this protein family is broadly needed to maintain centriole structure.


Vyšlo v časopise: SAS-1 Is a C2 Domain Protein Critical for Centriole Integrity in. PLoS Genet 10(11): e32767. doi:10.1371/journal.pgen.1004777
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004777

Souhrn

Centrioles are microtubule-based organelles critical for forming cilia, flagella and centrosomes. Centrioles are very stable, but how such stability is ensured is poorly understood. We identified sas-1 as a component that contributes to centriole stability in C. elegans. Centrioles that lack sas-1 function loose their integrity, and our analysis reveals that sas-1 is particularly important for sperm-derived centrioles. Moreover, we show that SAS-1 binds and stabilizes microtubules in human cells, together leading us to propose that SAS-1 acts by stabilizing centriolar microtubules. We identify C2CD3 as a human homolog of SAS-1. C2CD3 is needed for the presence of the distal part of centrioles in human cells, and we thus propose that this protein family is broadly needed to maintain centriole structure.


Zdroje

1. NiggEA, StearnsT (2011) The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol 13: 1154–1160.

2. GönczyP (2012) Towards a molecular architecture of centriole assembly. Nat Rev Mol Cell Biol 13: 425–435.

3. KempCA, KopishKR, ZipperlenP, AhringerJ, O'ConnellKF (2004) Centrosome maturation and duplication in C. elegans require the coiled-coil protein SPD-2. Dev Cell 6: 511–523.

4. PelletierL, OzlüN, HannakE, CowanC, HabermannB, et al. (2004) The Caenorhabditis elegans centrosomal protein SPD-2 is required for both pericentriolar material recruitment and centriole duplication. Curr Biol 14: 863–873.

5. O'ConnellKF, CaronC, KopishKR, HurdDD, KemphuesKJ, et al. (2001) The C. elegans zyg-1 gene encodes a regulator of centrosome duplication with distinct maternal and paternal roles in the embryo. Cell 105: 547–558.

6. DelattreM, LeidelS, WaniK, BaumerK, BamatJ, et al. (2004) Centriolar SAS-5 is required for centrosome duplication in C. elegans. Nat Cell Biol 6: 656–664.

7. LeidelS, DelattreM, CeruttiL, BaumerK, GönczyP (2005) SAS-6 defines a protein family required for centrosome duplication in C. elegans and in human cells. Nat Cell Biol 7: 115–125.

8. LeidelS, GönczyP (2003) SAS-4 is essential for centrosome duplication in C elegans and is recruited to daughter centrioles once per cell cycle. Dev Cell 4: 431–439.

9. DammermannA, Müller-ReichertT, PelletierL, HabermannB, DesaiA, et al. (2004) Centriole assembly requires both centriolar and pericentriolar material proteins. Dev Cell 7: 815–829.

10. KirkhamM, Müller-ReichertT, OegemaK, GrillS, HymanAA (2003) SAS-4 is a C. elegans centriolar protein that controls centrosome size. Cell 112: 575–587.

11. DelattreM, CanardC, GönczyP (2006) Sequential protein recruitment in C. elegans centriole formation. Curr Biol 16: 1844–1849.

12. PelletierL, O'TooleE, SchwagerA, HymanAA, Müller-ReichertT (2006) Centriole assembly in Caenorhabditis elegans. Nature 444: 619–623.

13. WolfN, HirshD, McIntoshJR (1978) Spermatogenesis in males of the free-living nematode, Caenorhabditis elegans. J Ultrastruct Res 63: 155–169.

14. VorobjevIA, ChentsovYS (1980) The ultrastructure of centriole in mammalian tissue culture cells. Cell Biol Int Rep 4: 1037–1044.

15. PaintrandM, MoudjouM, DelacroixH, BornensM (1992) Centrosome organization and centriole architecture: their sensitivity to divalent cations. J Struct Biol 108: 107–128.

16. Carvalho-SantosZ, MachadoP, BrancoP, Tavares-CadeteF, Rodrigues-MartinsA, et al. (2010) Stepwise evolution of the centriole-assembly pathway. J Cell Sci 123: 1414–1426.

17. HodgesME, ScheumannN, WicksteadB, LangdaleJA, GullK (2010) Reconstructing the evolutionary history of the centriole from protein components. J Cell Sci 123: 1407–1413.

18. InouéS, SatoH (1967) Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement. J Gen Physiol 50 Suppl259–292.

19. MargolisRL, WilsonL (1978) Opposite end assembly and disassembly of microtubules at steady state in vitro. Cell 13: 1–8.

20. PipernoG, LeDizetM, ChangXJ (1987) Microtubules containing acetylated alpha-tubulin in mammalian cells in culture. J Cell Biol 104: 289–302.

21. MitchisonTJ, KirschnerMW (1986) Isolation of mammalian centrosomes. Methods Enzymol 134: 261–268.

22. BornensM, PaintrandM, BergesJ, MartyMC, KarsentiE (1987) Structural and chemical characterization of isolated centrosomes. Cell Motil Cytoskeleton 8: 238–249.

23. KochanskiRS, BorisyGG (1990) Mode of centriole duplication and distribution. J Cell Biol 110: 1599–1605.

24. GundersenGG, BulinskiJC (1986) Microtubule arrays in differentiated cells contain elevated levels of a post-translationally modified form of tubulin. Eur J Cell Biol 42: 288–294.

25. BreMH, KreisTE, KarsentiE (1987) Control of microtubule nucleation and stability in Madin-Darby canine kidney cells: the occurrence of noncentrosomal, stable detyrosinated microtubules. J Cell Biol 105: 1283–1296.

26. BréMH, de NéchaudB, WolffA, FleuryA (1994) Glutamylated tubulin probed in ciliates with the monoclonal antibody GT335. Cell Motil Cytoskeleton 27: 337–349.

27. FouquetJP, EddeB, KannML, WolffA, DesbruyeresE, et al. (1994) Differential distribution of glutamylated tubulin during spermatogenesis in mammalian testis. Cell Motil Cytoskeleton 27: 49–58.

28. BobinnecY, MoudjouM, FouquetJP, DesbruyèresE, EddéB, et al. (1998) Glutamylation of centriole and cytoplasmic tubulin in proliferating non-neuronal cells. Cell Motil Cytoskeleton 39: 223–232.

29. WlogaD, DaveD, MeagleyJ, RogowskiK, Jerka-DziadoszM, et al. (2010) Hyperglutamylation of tubulin can either stabilize or destabilize microtubules in the same cell. Eukaryot Cell 9: 184–193.

30. WlogaD, GaertigJ (2010) Post-translational modifications of microtubules. J Cell Sci 123: 3447–3455.

31. BobinnecY, KhodjakovA, MirLM, RiederCL, EddéB, et al. (1998) Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. J Cell Biol 143: 1575–1589.

32. Le ClechM (2008) Role of CAP350 in centriolar tubule stability and centriole assembly. PLoS One 3: e3855.

33. PearsonCG, OsbornDPS, GiddingsJ, ThomasH, BealesPL, WineyM (2009) Basal body stability and ciliogenesis requires the conserved component Poc1. J Cell Biol 187: 905–920.

34. GudiR, ZouC, LiJ, GaoQ (2011) Centrobin-tubulin interaction is required for centriole elongation and stability. J Cell Biol 193: 711–725.

35. VenouxM, TaitX, HamesRS, StraatmanKR, WoodlandHR, et al. (2013) Poc1A and Poc1B act together in human cells to ensure centriole integrity. J Cell Sci 126: 163–175.

36. WoodlandHR, FryAM (2008) Pix proteins and the evolution of centrioles. PLoS One 3: e3778.

37. HamesRS, HamesR, ProsserSL, EuteneuerU, LopesCA, et al. (2008) Pix1 and Pix2 are novel WD40 microtubule-associated proteins that colocalize with mitochondria in Xenopus germ plasm and centrosomes in human cells. Exp Cell Res 314: 574–589.

38. KellerLC, GeimerS, RomijnE, YatesJ3rd, ZamoraI, et al. (2009) Molecular architecture of the centriole proteome: the conserved WD40 domain protein POC1 is required for centriole duplication and length control. Mol Biol Cell 20: 1150–1166.

39. BlachonS, CaiX, RobertsKA, YangK, PolyanovskyA, et al. (2009) A proximal centriole-like structure is present in Drosophila spermatids and can serve as a model to study centriole duplication. Genetics 182: 133–144.

40. JeongY, LeeJ, KimK, YooJC, RheeK (2007) Characterization of NIP2/centrobin, a novel substrate of Nek2, and its potential role in microtubule stabilization. J Cell Sci 120: 2106–2116.

41. ManandharG, SchattenH, SutovskyP (2005) Centrosome reduction during gametogenesis and its significance. Biol Reprod 72: 2–13.

42. GönczyP, SchnabelH, KalettaT, AmoresAD, HymanT, et al. (1999) Dissection of cell division processes in the one cell stage Caenorhabditis elegans embryo by mutational analysis. J Cell Biol 144: 927–946.

43. Corbalan-GarciaS, Gomez-FernandezJC (2014) Signaling through C2 domains: more than one lipid target. Biochim Biophys Acta 1838: 1536–1547.

44. BalestraFR, StrnadP, FlückigerI, GönczyP (2013) Discovering regulators of centriole biogenesis through siRNA-based functional genomics in human cells. Dev Cell 25: 555–571.

45. Thauvin-RobinetC, LeeJS, LopezE, Herranz-PerezV, ShidaT, et al. (2014) The oral-facial-digital syndrome gene C2CD3 encodes a positive regulator of centriole elongation. Nat Genet 46: 905–911.

46. YeX, ZengH, NingG, ReiterJF, LiuA (2014) C2cd3 is critical for centriolar distal appendage assembly and ciliary vesicle docking in mammals. Proc Natl Acad Sci U S A 111: 2164–2169.

47. HooverAN, WynkoopA, ZengH, JiaJ, NiswanderLA, et al. (2008) C2cd3 is required for cilia formation and Hedgehog signaling in mouse. Development 135: 4049–4058.

48. GillinghamAK, MunroS (2000) The PACT domain, a conserved centrosomal targeting motif in the coiled-coil proteins AKAP450 and pericentrin. EMBO Rep 1: 524–529.

49. StrnadP, LeidelS, VinogradovaT, EuteneuerU, KhodjakovA, et al. (2007) Regulated HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome duplication cycle. Dev Cell 13: 203–213.

50. BornensM (2002) Centrosome composition and microtubule anchoring mechanisms. Curr Opin Cell Biol 14: 25–34.

51. SathananthanAH, RatnamSS, NgSC, TarínJJ, GianaroliL, et al. (1996) The sperm centriole: its inheritance, replication and perpetuation in early human embryos. Hum Reprod 11: 345–356.

52. Sathananthan AH (2012) The Centrosome. In: Schatten H, editor: Humana Press. pp. 73–97.

53. ManandharG, SimerlyC, SchattenG (2000) Highly degenerated distal centrioles in rhesus and human spermatozoa. Hum Reprod 15: 256–263.

54. SiddiquiSS, AamodtE, RastinejadF, CulottiJ (1989) Anti-tubulin monoclonal antibodies that bind to specific neurons in Caenorhabditis elegans. J Neurosci 9: 2963–2972.

55. HannakE, OegemaK, KirkhamM, GönczyP, HabermannB, et al. (2002) The kinetically dominant assembly pathway for centrosomal asters in Caenorhabditis elegans is gamma-tubulin dependent. J Cell Biol 157: 591–602.

56. AzimzadehJ, HergertP, DelouvéeA, EuteneuerU, FormstecherE, et al. (2009) hPOC5 is a centrin-binding protein required for assembly of full-length centrioles. J Cell Biol 185: 101–114.

57. GordenNT, ArtsHH, ParisiMA, CoeneKL, LetteboerSJ, et al. (2008) CC2D2A is mutated in Joubert syndrome and interacts with the ciliopathy-associated basal body protein CEP290. Am J Hum Genet 83: 559–571.

58. Garcia-GonzaloFR, ReiterJF (2012) Scoring a backstage pass: mechanisms of ciliogenesis and ciliary access. J Cell Biol 197: 697–709.

59. BrennerS (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71–94.

60. SchedlT, KimbleJ (1988) fog-2, a germ-line-specific sex determination gene required for hermaphrodite spermatogenesis in Caenorhabditis elegans. Genetics 119: 43–61.

61. HodgkinJ, DoniachT (1997) Natural variation and copulatory plug formation in Caenorhabditis elegans. Genetics 146: 149–164.

62. SwanKA, CurtisDE, McKusickKB, VoinovAV, MapaFA, et al. (2002) High-throughput gene mapping in Caenorhabditis elegans. Genome Res 12: 1100–1105.

63. QiaoR, CabralG, LettmanMM, DammermannA, DongG (2012) SAS-6 coiled-coil structure and interaction with SAS-5 suggest a regulatory mechanism in C. elegans centriole assembly. EMBO J 31: 4334–4347.

64. CabralG, SansSS, CowanCR, DammermannA (2013) Multiple mechanisms contribute to centriole separation in C. elegans. Curr Biol 23: 1380–1387.

65. DammermannA, MaddoxPS, DesaiA, OegemaK (2008) SAS-4 is recruited to a dynamic structure in newly forming centrioles that is stabilized by the gamma-tubulin-mediated addition of centriolar microtubules. J Cell Biol 180: 771–785.

66. McNallyK, AudhyaA, OegemaK, McNallyFJ (2006) Katanin controls mitotic and meiotic spindle length. J Cell Biol 175: 881–891.

67. PraitisV, CaseyE, CollarD, AustinJ (2001) Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics 157: 1217–1226.

68. HamillDR, SeversonAF, CarterJC, BowermanB (2002) Centrosome maturation and mitotic spindle assembly in C. elegans require SPD-5, a protein with multiple coiled-coil domains. Dev Cell 3: 673–684.

69. LeungB, HermannGJ, PriessJR (1999) Organogenesis of the Caenorhabditis elegans intestine. Dev Biol 216: 114–134.

70. WicksSR, YehRT, GishWR, WaterstonRH, PlasterkRH (2001) Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nat Genet 28: 160–164.

71. KatohK, StandleyDM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30: 772–780.

72. StamatakisA, HooverP, RougemontJ (2008) A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 57: 758–771.

73. HusonDH, RichterDC, RauschC, DezulianT, FranzM, et al. (2007) Dendroscope: An interactive viewer for large phylogenetic trees. BMC Bioinformatics 8: 460.

74. PettersenEF, GoddardTD, HuangCC, CouchGS, GreenblattDM, et al. (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25: 1605–1612.

75. BellangerJM, GönczyP (2003) TAC-1 and ZYG-9 form a complex that promotes microtubule assembly in C. elegans embryos. Curr Biol 13: 1488–1498.

76. BachM, GrigatS, PawlikB, ForkC, UtermöhlenO, et al. (2007) Fast set-up of doxycycline-inducible protein expression in human cell lines with a single plasmid based on Epstein-Barr virus replication and the simple tetracycline repressor. FEBS J 274: 783–790.

77. HaarioH, LaineM, MiraA, SaksmanE (2006) DRAM: Efficient adaptive MCMC. Statistics and Computing 16: 339–354.

78. Schuster-BocklerB, SchultzJ, RahmannS (2004) HMM Logos for visualization of protein families. BMC Bioinformatics 5: 7.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#