#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Functional Portrait of Med7 and the Mediator Complex in


In this study, we have investigated Mediator function in the human fungal pathogen C. albicans. An initial screening of conditionally regulated Mediator subunits showed that the Med7 of C. albicans was not essential, in contrast to the situation noted for S. cerevisiae. While loss of CaMed7 did not lead to loss of viability under normal growth conditions, it dramatically influenced the pathogen's ability to grow in different carbon sources, to form hyphae and biofilms, and to colonize the gastrointestinal tracts of mice. We used location profiling to determine Mediator binding under yeast and hyphal morphologies characterized by different transcription profiles. We observed a core set of specific and common genes bound by Med7 under both conditions; this specific core set is expanded considerably during hyphal growth, supporting the idea that Mediator binding correlates with changes in transcriptional activity and that this binding is condition specific. Med7 bound not only in the promoter regions of active genes but also of inactive genes and within coding regions and at the 3′ ends of genes. By combining genome-wide location profiling, expression analyses and phenotyping, we have identified different Med7 regulons including genes related to glycolysis and the Filamentous Growth Regulator family.


Vyšlo v časopise: A Functional Portrait of Med7 and the Mediator Complex in. PLoS Genet 10(11): e32767. doi:10.1371/journal.pgen.1004770
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004770

Souhrn

In this study, we have investigated Mediator function in the human fungal pathogen C. albicans. An initial screening of conditionally regulated Mediator subunits showed that the Med7 of C. albicans was not essential, in contrast to the situation noted for S. cerevisiae. While loss of CaMed7 did not lead to loss of viability under normal growth conditions, it dramatically influenced the pathogen's ability to grow in different carbon sources, to form hyphae and biofilms, and to colonize the gastrointestinal tracts of mice. We used location profiling to determine Mediator binding under yeast and hyphal morphologies characterized by different transcription profiles. We observed a core set of specific and common genes bound by Med7 under both conditions; this specific core set is expanded considerably during hyphal growth, supporting the idea that Mediator binding correlates with changes in transcriptional activity and that this binding is condition specific. Med7 bound not only in the promoter regions of active genes but also of inactive genes and within coding regions and at the 3′ ends of genes. By combining genome-wide location profiling, expression analyses and phenotyping, we have identified different Med7 regulons including genes related to glycolysis and the Filamentous Growth Regulator family.


Zdroje

1. BjorklundS, GustafssonCM (2005) The yeast Mediator complex and its regulation. Trends Biochem Sci 30: 240–244.

2. ConawayRC, ConawayJW (2013) The Mediator complex and transcription elongation. Biochim Biophys Acta 1829: 69–75.

3. RoederRG (2005) Transcriptional regulation and the role of diverse coactivators in animal cells. FEBS Lett 579: 909–915.

4. VojnicE, MouraoA, SeizlM, SimonB, WenzeckL, et al. (2011) Structure and VP16 binding of the Mediator Med25 activator interaction domain. Nat Struct Mol Biol 18: 404–409.

5. MilbradtAG, KulkarniM, YiT, TakeuchiK, SunZY, et al. (2011) Structure of the VP16 transactivator target in the Mediator. Nat Struct Mol Biol 18: 410–415.

6. MyersLC, KornbergRD (2000) Mediator of transcriptional regulation. Annu Rev Biochem 69: 729–749.

7. KornbergRD (2005) Mediator and the mechanism of transcriptional activation. Trends Biochem Sci 30: 235–239.

8. SpaethJM, KimNH, BoyerTG (2011) Mediator and human disease. Semin Cell Dev Biol 22: 776–787.

9. MalikS, RoederRG (2010) The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat Rev Genet 11: 761–772.

10. KremerSB, KimS, JeonJO, MoustafaYW, ChenA, et al. (2012) Role of Mediator in regulating Pol II elongation and nucleosome displacement in Saccharomyces cerevisiae. Genetics 191: 95–106.

11. TakahashiH, ParmelyTJ, SatoS, Tomomori-SatoC, BanksCA, et al. (2011) Human mediator subunit MED26 functions as a docking site for transcription elongation factors. Cell 146: 92–104.

12. DonnerAJ, EbmeierCC, TaatjesDJ, EspinosaJM (2010) CDK8 is a positive regulator of transcriptional elongation within the serum response network. Nat Struct Mol Biol 17: 194–201.

13. MukundanB, AnsariA (2011) Novel role for mediator complex subunit Srb5/Med18 in termination of transcription. J Biol Chem 286: 37053–37057.

14. KelleherRJ3rd, FlanaganPM, KornbergRD (1990) A novel mediator between activator proteins and the RNA polymerase II transcription apparatus. Cell 61: 1209–1215.

15. AnsariSA, MorseRH (2013) Mechanisms of Mediator complex action in transcriptional activation. Cell Mol Life Sci 70: 2743–2756.

16. KimYJ, BjorklundS, LiY, SayreMH, KornbergRD (1994) A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77: 599–608.

17. MyersLC, GustafssonCM, BushnellDA, LuiM, Erdjument-BromageH, et al. (1998) The Med proteins of yeast and their function through the RNA polymerase II carboxy-terminal domain. Genes Dev 12: 45–54.

18. KageyMH, NewmanJJ, BilodeauS, ZhanY, OrlandoDA, et al. (2010) Mediator and cohesin connect gene expression and chromatin architecture. Nature 467: 430–435.

19. KhorosjutinaO, WanrooijPH, WalfridssonJ, SzilagyiZ, ZhuX, et al. (2010) A chromatin-remodeling protein is a component of fission yeast mediator. J Biol Chem 285: 29729–29737.

20. ZhuX, ZhangY, BjornsdottirG, LiuZ, QuanA, et al. (2011) Histone modifications influence mediator interactions with chromatin. Nucleic Acids Res 39: 8342–8354.

21. LiuZ, MyersLC (2012) Med5(Nut1) and Med17(Srb4) are direct targets of mediator histone H4 tail interactions. PLoS ONE 7: e38416.

22. BourbonHM, AguileraA, AnsariAZ, AsturiasFJ, BerkAJ, et al. (2004) A unified nomenclature for protein subunits of mediator complexes linking transcriptional regulators to RNA polymerase II. Mol Cell 14: 553–557.

23. ZhuX, LiuB, CarlstenJO, BeveJ, NystromT, et al. (2011) Mediator influences telomeric silencing and cellular life span. Mol Cell Biol 31: 2413–2421.

24. HuangY, LiW, YaoX, LinQJ, YinJW, et al. (2012) Mediator complex regulates alternative mRNA processing via the MED23 subunit. Mol Cell 45: 459–469.

25. SatoS, Tomomori-SatoC, ParmelyTJ, FlorensL, ZybailovB, et al. (2004) A set of consensus mammalian mediator subunits identified by multidimensional protein identification technology. Mol Cell 14: 685–691.

26. ConawayRC, ConawayJW (2011) Origins and activity of the Mediator complex. Semin Cell Dev Biol 22: 729–734.

27. KangJS, KimSH, HwangMS, HanSJ, LeeYC, et al. (2001) The structural and functional organization of the yeast mediator complex. J Biol Chem 276: 42003–42010.

28. TakagiY, CaleroG, KomoriH, BrownJA, EhrensbergerAH, et al. (2006) Head module control of mediator interactions. Mol Cell 23: 355–364.

29. CaiG, ImasakiT, YamadaK, CardelliF, TakagiY, et al. (2010) Mediator head module structure and functional interactions. Nat Struct Mol Biol 17: 273–279.

30. PossZC, EbmeierCC, TaatjesDJ (2013) The Mediator complex and transcription regulation. Crit Rev Biochem Mol Biol 48: 575–608.

31. ItoM, RoederRG (2001) The TRAP/SMCC/Mediator complex and thyroid hormone receptor function. Trends Endocrinol Metab 12: 127–134.

32. ConawayRC, ConawayJW (2011) Function and regulation of the Mediator complex. Curr Opin Genet Dev 21: 225–230.

33. LeeYC, ParkJM, MinS, HanSJ, KimYJ (1999) An activator binding module of yeast RNA polymerase II holoenzyme. Mol Cell Biol 19: 2967–2976.

34. AkoulitchevS, ChuikovS, ReinbergD (2000) TFIIH is negatively regulated by cdk8-containing mediator complexes. Nature 407: 102–106.

35. MalikS, GuW, WuW, QinJ, RoederRG (2000) The USA-derived transcriptional coactivator PC2 is a submodule of TRAP/SMCC and acts synergistically with other PCs. Mol Cell 5: 753–760.

36. TaatjesDJ, NaarAM, AndelF3rd, NogalesE, TjianR (2002) Structure, function, and activator-induced conformations of the CRSP coactivator. Science 295: 1058–1062.

37. SpahrH, KhorosjutinaO, BaraznenokV, LinderT, SamuelsenCO, et al. (2003) Mediator influences Schizosaccharomyces pombe RNA polymerase II-dependent transcription in vitro. J Biol Chem 278: 51301–51306.

38. MyersLC, GustafssonCM, HayashibaraKC, BrownPO, KornbergRD (1999) Mediator protein mutations that selectively abolish activated transcription. Proc Natl Acad Sci U S A 96: 67–72.

39. ParkJM, KimHS, HanSJ, HwangMS, LeeYC, et al. (2000) In vivo requirement of activator-specific binding targets of mediator. Mol Cell Biol 20: 8709–8719.

40. ZhangF, SumibcayL, HinnebuschAG, SwansonMJ (2004) A triad of subunits from the Gal11/tail domain of Srb mediator is an in vivo target of transcriptional activator Gcn4p. Mol Cell Biol 24: 6871–6886.

41. BalamotisMA, PennellaMA, StevensJL, WasylykB, BelmontAS, et al. (2009) Complexity in transcription control at the activation domain-mediator interface. Sci Signal 2: ra20.

42. HengartnerCJ, ThompsonCM, ZhangJ, ChaoDM, LiaoSM, et al. (1995) Association of an activator with an RNA polymerase II holoenzyme. Genes Dev 9: 897–910.

43. LiaoSM, ZhangJ, JefferyDA, KoleskeAJ, ThompsonCM, et al. (1995) A kinase-cyclin pair in the RNA polymerase II holoenzyme. Nature 374: 193–196.

44. TaatjesDJ, MarrMT, TjianR (2004) Regulatory diversity among metazoan co-activator complexes. Nat Rev Mol Cell Biol 5: 403–410.

45. LiB, CareyM, WorkmanJL (2007) The role of chromatin during transcription. Cell 128: 707–719.

46. TaatjesDJ (2010) The human Mediator complex: a versatile, genome-wide regulator of transcription. Trends Biochem Sci 35: 315–322.

47. YangF, VoughtBW, SatterleeJS, WalkerAK, Jim SunZY, et al. (2006) An ARC/Mediator subunit required for SREBP control of cholesterol and lipid homeostasis. Nature 442: 700–704.

48. HerbigE, WarfieldL, FishL, FishburnJ, KnutsonBA, et al. (2010) Mechanism of Mediator recruitment by tandem Gcn4 activation domains and three Gal11 activator-binding domains. Mol Cell Biol 30: 2376–2390.

49. JedidiI, ZhangF, QiuH, StahlSJ, PalmerI, et al. (2010) Activator Gcn4 employs multiple segments of Med15/Gal11, including the KIX domain, to recruit mediator to target genes in vivo. J Biol Chem 285: 2438–2455.

50. BrzovicPS, HeikausCC, KisselevL, VernonR, HerbigE, et al. (2011) The acidic transcription activator Gcn4 binds the mediator subunit Gal11/Med15 using a simple protein interface forming a fuzzy complex. Mol Cell 44: 942–953.

51. AnsariSA, HeQ, MorseRH (2009) Mediator complex association with constitutively transcribed genes in yeast. Proc Natl Acad Sci U S A 106: 16734–16739.

52. AnsariSA, GanapathiM, BenschopJJ, HolstegeFC, WadeJT, et al. (2012) Distinct role of Mediator tail module in regulation of SAGA-dependent, TATA-containing genes in yeast. EMBO J 31: 44–57.

53. UwamahoroN, QuY, JelicicB, LoTL, BeaurepaireC, et al. (2012) The functions of Mediator in Candida albicans support a role in shaping species-specific gene expression. PLoS Genet 8: e1002613.

54. ZhangA, PetrovKO, HyunER, LiuZ, GerberSA, et al. (2012) The Tlo proteins are stoichiometric components of Candida albicans mediator anchored via the Med3 subunit. Eukaryot Cell 11: 874–884.

55. ZhangA, LiuZ, MyersLC (2013) Differential regulation of white-opaque switching by individual subunits of Candida albicans mediator. Eukaryot Cell 12: 1293–1304.

56. BorggrefeT, YueX (2011) Interactions between subunits of the Mediator complex with gene-specific transcription factors. Semin Cell Dev Biol 22: 759–768.

57. KarijolichJJ, HampseyM (2012) The Mediator complex. Curr Biol 22: R1030–1031.

58. KoschubsT, SeizlM, LariviereL, KurthF, BaumliS, et al. (2009) Identification, structure, and functional requirement of the Mediator submodule Med7N/31. EMBO J 28: 69–80.

59. TsaiKL, Tomomori-SatoC, SatoS, ConawayRC, ConawayJW, et al. (2014) Subunit architecture and functional modular rearrangements of the transcriptional mediator complex. Cell 157: 1430–1444.

60. RoemerT, JiangB, DavisonJ, KetelaT, VeilletteK, et al. (2003) Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Mol Microbiol 50: 167–181.

61. Chatr-AryamontriA, BreitkreutzBJ, HeinickeS, BoucherL, WinterA, et al. (2013) The BioGRID interaction database: 2013 update. Nucleic Acids Res 41: D816–823.

62. SubramanianA, TamayoP, MoothaVK, MukherjeeS, EbertBL, et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102: 15545–15550.

63. SpieringMJ, MoranGP, ChauvelM, MaccallumDM, HigginsJ, et al. (2010) Comparative transcript profiling of Candida albicans and Candida dubliniensis identifies SFL2, a C. albicans gene required for virulence in a reconstituted epithelial infection model. Eukaryot Cell 9: 251–265.

64. KadoshD, JohnsonAD (2005) Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Mol Biol Cell 16: 2903–2912.

65. NantelA, DignardD, BachewichC, HarcusD, MarcilA, et al. (2002) Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol Biol Cell 13: 3452–3465.

66. StichternothC, FraundA, SetiadiE, GiassonL, VecchiarelliA, et al. (2011) Sch9 kinase integrates hypoxia and CO2 sensing to suppress hyphal morphogenesis in Candida albicans. Eukaryot Cell 10: 502–511.

67. HoguesH, LavoieH, SellamA, MangosM, RoemerT, et al. (2008) Transcription factor substitution during the evolution of fungal ribosome regulation. Mol Cell 29: 552–562.

68. LavoieH, HoguesH, MallickJ, SellamA, NantelA, et al. (2010) Evolutionary tinkering with conserved components of a transcriptional regulatory network. PLoS Biol 8: e1000329.

69. LavoieH, HoguesH, WhitewayM (2009) Rearrangements of the transcriptional regulatory networks of metabolic pathways in fungi. Curr Opin Microbiol 12: 655–663.

70. LeeSB, KangHS, KimT (2013) Nrg1 functions as a global transcriptional repressor of glucose-repressed genes through its direct binding to the specific promoter regions. Biochem Biophys Res Commun 439: 501–505.

71. LavoieH, SellamA, AskewC, NantelA, WhitewayM (2008) A toolbox for epitope-tagging and genome-wide location analysis in Candida albicans. BMC Genomics 9: 578.

72. SellamA, HoguesH, AskewC, TebbjiF, van Het HoogM, et al. (2010) Experimental annotation of the human pathogen Candida albicans coding and noncoding transcribed regions using high-resolution tiling arrays. Genome Biol 11: R71.

73. AndrauJC, van de PaschL, LijnzaadP, BijmaT, KoerkampMG, et al. (2006) Genome-wide location of the coactivator mediator: Binding without activation and transient Cdk8 interaction on DNA. Mol Cell 22: 179–192.

74. FanX, StruhlK (2009) Where does mediator bind in vivo? PLoS One 4: e5029.

75. ZhuX, WirenM, SinhaI, RasmussenNN, LinderT, et al. (2006) Genome-wide occupancy profile of mediator and the Srb8-11 module reveals interactions with coding regions. Mol Cell 22: 169–178.

76. HarcusD, DignardD, LepineG, AskewC, RaymondM, et al. (2013) Comparative xylose metabolism among the Ascomycetes C. albicans, S. stipitis and S. cerevisiae. PLoS One 8: e80733.

77. UhlMA, BieryM, CraigN, JohnsonAD (2003) Haploinsufficiency-based large-scale forward genetic analysis of filamentous growth in the diploid human fungal pathogen C.albicans. EMBO J 22: 2668–2678.

78. KimDU, HaylesJ, KimD, WoodV, ParkHO, et al. (2010) Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol 28: 617–623.

79. PerezJC, KumamotoCA, JohnsonAD (2013) Candida albicans commensalism and pathogenicity are intertwined traits directed by a tightly knit transcriptional regulatory circuit. PLoS Biol 11: e1001510.

80. AskewC, SellamA, EppE, HoguesH, MullickA, et al. (2009) Transcriptional regulation of carbohydrate metabolism in the human pathogen Candida albicans. PLoS Pathog 5: e1000612.

81. CantinGT, StevensJL, BerkAJ (2003) Activation domain-mediator interactions promote transcription preinitiation complex assembly on promoter DNA. Proc Natl Acad Sci U S A 100: 12003–12008.

82. JohnsonKM, CareyM (2003) Assembly of a mediator/TFIID/TFIIA complex bypasses the need for an activator. Curr Biol 13: 772–777.

83. WuSY, ZhouT, ChiangCM (2003) Human mediator enhances activator-facilitated recruitment of RNA polymerase II and promoter recognition by TATA-binding protein (TBP) independently of TBP-associated factors. Mol Cell Biol 23: 6229–6242.

84. ThompsonCM, YoungRA (1995) General requirement for RNA polymerase II holoenzymes in vivo. Proc Natl Acad Sci U S A 92: 4587–4590.

85. MittlerG, KremmerE, TimmersHT, MeisterernstM (2001) Novel critical role of a human Mediator complex for basal RNA polymerase II transcription. EMBO Rep 2: 808–813.

86. KimJ, KimI, HanSK, BowieJU, KimS (2012) Network rewiring is an important mechanism of gene essentiality change. Sci Rep 2: 900.

87. BelliG, GariE, AldeaM, HerreroE (1998) Functional analysis of yeast essential genes using a promoter-substitution cassette and the tetracycline-regulatable dual expression system. Yeast 14: 1127–1138.

88. GuthrieC, FinkG (1991) Guide to yeast genetics and molecular biology. Methods Enzymol 194: 1–863.

89. GolaS, MartinR, WaltherA, DunklerA, WendlandJ (2003) New modules for PCR-based gene targeting in Candida albicans: rapid and efficient gene targeting using 100 bp of flanking homology region. Yeast 20: 1339–1347.

90. MuradAM, LeePR, BroadbentID, BarelleCJ, BrownAJ (2000) CIp10, an efficient and convenient integrating vector for Candida albicans. Yeast 16: 325–327.

91. RamageG, Vande WalleK, WickesBL, Lopez-RibotJL (2001) Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob Agents Chemother 45: 2475–2479.

92. WhiteSJ, RosenbachA, LephartP, NguyenD, BenjaminA, et al. (2007) Self-regulation of Candida albicans population size during GI colonization. PLoS Pathog 3: e184.

93. R Development Core Team (2011) R: A language and environment for statistical computing. Vienna, Austria: the R Foundation for Statistical Computing.

94. Nantel A, Rigby T, Hogues H, Whiteway M (2006) Microarrays for studying pathogenicity in Candida albicans. In: Kavanagh K, editor Medical Mycology: Cellular and Molecular Techniques Hoboken, NJ: Wiley Press: 181–209.

95. SellamA, TebbjiF, NantelA (2009) Role of Ndt80p in sterol metabolism regulation and azole resistance in Candida albicans. Eukaryot Cell 8: 1174–1183.

96. van het HoogM, RastTJ, MartchenkoM, GrindleS, DignardD, et al. (2007) Assembly of the Candida albicans genome into sixteen supercontigs aligned on the eight chromosomes. Genome Biol 8: R52.

97. HullCM, JohnsonAD (1999) Identification of a mating type-like locus in the asexual pathogenic yeast Candida albicans. Science 285: 1271–1275.

98. TuchBB, GalgoczyDJ, HerndayAD, LiH, JohnsonAD (2008) The evolution of combinatorial gene regulation in fungi. PLoS Biol 6: e38.

99. WasiakS, Legendre-GuilleminV, PuertollanoR, BlondeauF, GirardM, et al. (2002) Enthoprotin: a novel clathrin-associated protein identified through subcellular proteomics. J Cell Biol 158: 855–862.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#