#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Natural Polymorphisms in Human APOBEC3H and HIV-1 Vif Combine in Primary T Lymphocytes to Affect Viral G-to-A Mutation Levels and Infectivity


The APOBEC3 enzymes protect cells by inhibiting the spread of retroelements, including HIV-1, by blocking reverse transcription and mutating cytosines in single-stranded DNA replication intermediates. HIV-1 Vif counteracts restriction by marking APOBEC3 proteins for proteasomal degradation. APOBEC3H is the most diverse member of this protein family. Humans have seven distinct APOBEC3H haplotypes with three producing stable and four producing unstable proteins upon forced overexpression. Here, we examine the stability phenotype of endogenous APOBEC3H in donors with different haplotypes and address how these stability differences, as well as natural viral diversity, combine to determine HIV-1 infectivity. We found that endogenous APOBEC3H haplotypes yield stable or unstable proteins and that stable APOBEC3H is induced during viral infection and restricts the replication of isolates with naturally occurring hypo-functional but not hyper-functional Vif alleles. We also found that the global distribution of stable APOBEC3H alleles correlates with the prevalence of HIV-1 Vif alleles capable of mediating its degradation, strongly suggesting that the viral Vif protein is capable of adapting to the APOBEC3H restriction potential of an infected individual. Thus, the combination of human APOBEC3H haplotypes and virus Vif alleles may help account for some of the observed disparities in disease progression and virus transmission.


Vyšlo v časopise: Natural Polymorphisms in Human APOBEC3H and HIV-1 Vif Combine in Primary T Lymphocytes to Affect Viral G-to-A Mutation Levels and Infectivity. PLoS Genet 10(11): e32767. doi:10.1371/journal.pgen.1004761
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004761

Souhrn

The APOBEC3 enzymes protect cells by inhibiting the spread of retroelements, including HIV-1, by blocking reverse transcription and mutating cytosines in single-stranded DNA replication intermediates. HIV-1 Vif counteracts restriction by marking APOBEC3 proteins for proteasomal degradation. APOBEC3H is the most diverse member of this protein family. Humans have seven distinct APOBEC3H haplotypes with three producing stable and four producing unstable proteins upon forced overexpression. Here, we examine the stability phenotype of endogenous APOBEC3H in donors with different haplotypes and address how these stability differences, as well as natural viral diversity, combine to determine HIV-1 infectivity. We found that endogenous APOBEC3H haplotypes yield stable or unstable proteins and that stable APOBEC3H is induced during viral infection and restricts the replication of isolates with naturally occurring hypo-functional but not hyper-functional Vif alleles. We also found that the global distribution of stable APOBEC3H alleles correlates with the prevalence of HIV-1 Vif alleles capable of mediating its degradation, strongly suggesting that the viral Vif protein is capable of adapting to the APOBEC3H restriction potential of an infected individual. Thus, the combination of human APOBEC3H haplotypes and virus Vif alleles may help account for some of the observed disparities in disease progression and virus transmission.


Zdroje

1. ConticelloSG (2008) The AID/APOBEC family of nucleic acid mutators. Genome Biology 9: 229.

2. RefslandEW, HarrisRS (2013) The APOBEC3 family of retroelement restriction factors. Curr Top Microbiol Immunol 371: 1–27.

3. DesimmieBA, Delviks-FrankenberrryKA, BurdickRC, QiD, IzumiT, et al. (2014) Multiple APOBEC3 restriction factors for HIV-1 and one Vif to rule them all. J Mol Biol 426: 1220–1245.

4. MalimMH, BieniaszPD (2012) HIV Restriction Factors and Mechanisms of Evasion. Cold Spring Harbor Perspectives in Medicine 2: a006940.

5. JägerS, KimDY, HultquistJF, ShindoK, LaRueRS, et al. (2012) Vif hijacks CBF-beta to degrade APOBEC3G and promote HIV-1 infection. Nature 481: 371–375.

6. ZhangW, DuJ, EvansSL, YuY, YuXF (2012) T-cell differentiation factor CBF-beta regulates HIV-1 Vif-mediated evasion of host restriction. Nature 481: 376–379.

7. HultquistJF, LengyelJA, RefslandEW, LaRueRS, LackeyL, et al. (2011) Human and rhesus APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H demonstrate a conserved capacity to restrict Vif-deficient HIV-1. J Virol 85: 11220–11234.

8. KoningFA, NewmanEN, KimEY, KunstmanKJ, WolinskySM, et al. (2009) Defining APOBEC3 expression patterns in human tissues and hematopoietic cell subsets. J Virol 83: 9474–9485.

9. RefslandEW, StengleinMD, ShindoK, AlbinJS, BrownWL, et al. (2010) Quantitative profiling of the full APOBEC3 mRNA repertoire in lymphocytes and tissues: implications for HIV-1 restriction. Nucleic Acids Res 38: 4274–4284.

10. JaniniM, RogersM, BirxDR, McCutchanFE (2001) Human immunodeficiency virus type 1 DNA sequences genetically damaged by hypermutation are often abundant in patient peripheral blood mononuclear cells and may be generated during near-simultaneous infection and activation of CD4(+) T cells. J Virol 75: 7973–7986.

11. LandAM, BallTB, LuoM, PilonR, SandstromP, et al. (2008) Human immunodeficiency virus (HIV) type 1 proviral hypermutation correlates with CD4 count in HIV-infected women from Kenya. J Virol 82: 8172–8182.

12. VartanianJP, MeyerhansA, SalaM, Wain-HobsonS (1994) G→A hypermutation of the human immunodeficiency virus type 1 genome: evidence for dCTP pool imbalance during reverse transcription. Proc Natl Acad Sci U S A 91: 3092–3096.

13. AlbinJS, HarrisRS (2010) Interactions of host APOBEC3 restriction factors with HIV-1 in vivo: implications for therapeutics. Expert Rev Mol Med 12: e4.

14. CarideE, BrindeiroRM, KallasEG, de SaCA, Eyer-SilvaWA, et al. (2002) Sexual transmission of HIV-1 isolate showing G→A hypermutation. J Clin Virol 23: 179–189.

15. FitzgibbonJE, MazarS, DubinDT (1993) A new type of G→A hypermutation affecting human immunodeficiency virus. AIDS Res Hum Retroviruses 9: 833–838.

16. GandhiSK, SilicianoJD, BaileyJR, SilicianoRF, BlanksonJN (2008) Role of APOBEC3G/F-mediated hypermutation in the control of human immunodeficiency virus type 1 in elite suppressors. J Virol 82: 3125–3130.

17. KiefferTL, KwonP, NettlesRE, HanY, RaySC, et al. (2005) G→A hypermutation in protease and reverse transcriptase regions of human immunodeficiency virus type 1 residing in resting CD4+ T cells in vivo. J Virol 79: 1975–1980.

18. KijakGH, JaniniLM, TovanabutraS, Sanders-BuellE, ArroyoMA, et al. (2008) Variable contexts and levels of hypermutation in HIV-1 proviral genomes recovered from primary peripheral blood mononuclear cells. Virology 376: 101–111.

19. PaceC, KellerJ, NolanD, JamesI, GaudieriS, et al. (2006) Population level analysis of human immunodeficiency virus type 1 hypermutation and its relationship with APOBEC3G and vif genetic variation. J Virol 80: 9259–9269.

20. PiantadosiA, HumesD, ChohanB, McClellandRS, OverbaughJ (2009) Analysis of the percentage of human immunodeficiency virus type 1 sequences that are hypermutated and markers of disease progression in a longitudinal cohort, including one individual with a partially defective Vif. J Virol 83: 7805–7814.

21. SuspèneR, RusniokC, VartanianJP, Wain-HobsonS (2006) Twin gradients in APOBEC3 edited HIV-1 DNA reflect the dynamics of lentiviral replication. Nucleic Acids Res 34: 4677–4684.

22. UlengaNK, SarrAD, HamelD, SankaleJL, MboupS, et al. (2008) The level of APOBEC3G (hA3G)-related G-to-A mutations does not correlate with viral load in HIV type 1-infected individuals. AIDS Res Hum Retroviruses 24: 1285–1290.

23. WoodN, BhattacharyaT, KeeleBF, GiorgiE, LiuM, et al. (2009) HIV evolution in early infection: selection pressures, patterns of insertion and deletion, and the impact of APOBEC. PLoS Pathog 5: e1000414.

24. LaRueRS, JonssonSR, SilversteinKA, LajoieM, BertrandD, et al. (2008) The artiodactyl APOBEC3 innate immune repertoire shows evidence for a multi-functional domain organization that existed in the ancestor of placental mammals. BMC Mol Biol 9: 104.

25. LaRueRS, LengyelJ, JónssonSR, AndrésdóttirV, HarrisRS (2010) Lentiviral Vif degrades the APOBEC3Z3/APOBEC3H protein of its mammalian host and is capable of cross-species activity. J Virol 84: 8193–8201.

26. ZielonkaJ, BravoIG, MarinoD, ConradE, PerkovicM, et al. (2009) Restriction of equine infectious anemia virus by equine APOBEC3 cytidine deaminases. J Virol 83: 7547–7559.

27. ZielonkaJ, MarinoD, HofmannH, YuhkiN, LocheltM, et al. (2010) Vif of feline immunodeficiency virus from domestic cats protects against APOBEC3 restriction factors from many felids. J Virol 84: 7312–7324.

28. VirgenCA, HatziioannouT (2007) Antiretroviral activity and Vif sensitivity of rhesus macaque APOBEC3 proteins. J Virol 81: 13932–13937.

29. SchröfelbauerB, ChenD, LandauNR (2004) A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif). Proc Natl Acad Sci U S A 101: 3927–3932.

30. MarianiR, ChenD, SchrofelbauerB, NavarroF, KonigR, et al. (2003) Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell 114: 21–31.

31. XuH, SvarovskaiaES, BarrR, ZhangY, KhanMA, et al. (2004) A single amino acid substitution in human APOBEC3G antiretroviral enzyme confers resistance to HIV-1 virion infectivity factor-induced depletion. Proc Natl Acad Sci U S A 101: 5652–5657.

32. MangeatB, TurelliP, LiaoS, TronoD (2004) A single amino acid determinant governs the species-specific sensitivity of APOBEC3G to Vif action. J Biol Chem 279: 14481–14483.

33. BogerdHP, DoehleBP, WiegandHL, CullenBR (2004) A single amino acid difference in the host APOBEC3G protein controls the primate species specificity of HIV type 1 virion infectivity factor. Proc Natl Acad Sci U S A 101: 3770–3774.

34. LiMM, WuLI, EmermanM (2010) The range of human APOBEC3H sensitivity to lentiviral Vif proteins. J Virol 84: 88–95.

35. OhAinleM, KernsJA, LiMM, MalikHS, EmermanM (2008) Antiretroelement activity of APOBEC3H was lost twice in recent human evolution. Cell Host Microbe 4: 249–259.

36. WangX, AbuduA, SonS, DangY, VentaPJ, et al. (2011) Analysis of human APOBEC3H haplotypes and anti-human immunodeficiency virus type 1 activity. J Virol 85: 3142–3152.

37. DuggalNK, FuW, AkeyJM, EmermanM (2013) Identification and antiviral activity of common polymorphisms in the APOBEC3 locus in human populations. Virology 443: 329–337.

38. DangY, SiewLM, WangX, HanY, LampenR, et al. (2008) Human cytidine deaminase APOBEC3H restricts HIV-1 replication. J Biol Chem 283: 11606–11614.

39. OomsM, BraytonB, LetkoM, MaioSM, PilcherCD, et al. (2013) HIV-1 Vif adaptation to human APOBEC3H haplotypes. Cell Host Microbe 14: 411–421.

40. OhAinleM, KernsJA, MalikHS, EmermanM (2006) Adaptive evolution and antiviral activity of the conserved mammalian cytidine deaminase APOBEC3H. Journal of virology 80: 3853–3862.

41. BinkaM, OomsM, StewardM, SimonV (2012) The activity spectrum of Vif from multiple HIV-1 subtypes against APOBEC3G, APOBEC3F, and APOBEC3H. J Virol 86: 49–59.

42. OomsM, LetkoM, BinkaM, SimonV (2013) The resistance of human APOBEC3H to HIV-1 NL4-3 molecular clone is determined by a single amino acid in Vif. PLoS One 8: e57744.

43. HarrisRS, HultquistJF, EvansDT (2012) The restriction factors of human immunodeficiency virus. J Biol Chem 287: 40875–40883.

44. DuggalNK, EmermanM (2012) Evolutionary conflicts between viruses and restriction factors shape immunity. Nat Rev Immunol 12: 687–695.

45. SuspèneR, HenryM, GuillotS, Wain-HobsonS, VartanianJP (2005) Recovery of APOBEC3-edited human immunodeficiency virus G→A hypermutants by differential DNA denaturation PCR. J Gen Virol 86: 125–129.

46. RefslandEW, HultquistJF, HarrisRS (2012) Endogenous Origins of HIV-1 G-to-A Hypermutation and Restriction in the Nonpermissive T Cell Line CEM2n. PLoS Pathog 8: e1002800.

47. HarariA, OomsM, MulderLC, SimonV (2009) Polymorphisms and splice variants influence the antiretroviral activity of human APOBEC3H. J Virol 83: 295–303.

48. Genomes ProjectC, AbecasisGR, AutonA, BrooksLD, DePristoMA, et al. (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491: 56–65.

49. GuoY, DongL, QiuX, WangY, ZhangB, et al. (2014) Structural basis for hijacking CBF-beta and CUL5 E3 ligase complex by HIV-1 Vif. Nature 505: 229–233.

50. SchröfelbauerB, SengerT, ManningG, LandauNR (2006) Mutational alteration of human immunodeficiency virus type 1 Vif allows for functional interaction with nonhuman primate APOBEC3G. J Virol 80: 5984–5991.

51. RussellRA, PathakVK (2007) Identification of two distinct human immunodeficiency virus type 1 Vif determinants critical for interactions with human APOBEC3G and APOBEC3F. J Virol 81: 8201–8210.

52. ChenKM, HarjesE, GrossPJ, FahmyA, LuY, et al. (2008) Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G. Nature 452: 116–119.

53. HarjesE, GrossPJ, ChenKM, LuY, ShindoK, et al. (2009) An extended structure of the APOBEC3G catalytic domain suggests a unique holoenzyme model. J Mol Biol 389: 819–832.

54. AlbinJS, HachéG, HultquistJF, BrownWL, HarrisRS (2010) Long-term restriction by APOBEC3F selects human immunodeficiency virus type 1 variants with restored Vif function. J Virol 84: 10209–10219.

55. HachéG, ShindoK, AlbinJS, HarrisRS (2008) Evolution of HIV-1 isolates that use a novel Vif-independent mechanism to resist restriction by human APOBEC3G. Curr Biol 18: 819–824.

56. GervaixA, WestD, LeoniLM, RichmanDD, Wong-StaalF, et al. (1997) A new reporter cell line to monitor HIV infection and drug susceptibility in vitro. Proc Natl Acad Sci U S A 94: 4653–4658.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#