#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Transfer of Immunity from Mother to Offspring Is Mediated via Egg-Yolk Protein Vitellogenin


Insects lack antibodies, the carriers of immunological memory that vertebrate mothers can transfer to their offspring. Yet, it has been shown that an insect mother facing pathogens can prime her offspring’s immune system. To date, it has remained enigmatic how insects achieve specific trans-generational immune priming despite the absence of antibody-based immunity. Here, we show this is made possible via an egg-yolk protein binding to immune elicitors that are then carried to eggs. This yolk protein, called vitellogenin, is able to bind to different bacteria and pathogenic pattern molecules. We use E. coli fragments as a bait to show how vitellogenin is necessary for the carrying of immune elicitors to eggs. These findings help to understand how insects fight pathogens and can be useful for protection of ecologically and economically important insects, such as the honey bee, that we used as a model species.


Vyšlo v časopise: Transfer of Immunity from Mother to Offspring Is Mediated via Egg-Yolk Protein Vitellogenin. PLoS Pathog 11(7): e32767. doi:10.1371/journal.ppat.1005015
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1005015

Souhrn

Insects lack antibodies, the carriers of immunological memory that vertebrate mothers can transfer to their offspring. Yet, it has been shown that an insect mother facing pathogens can prime her offspring’s immune system. To date, it has remained enigmatic how insects achieve specific trans-generational immune priming despite the absence of antibody-based immunity. Here, we show this is made possible via an egg-yolk protein binding to immune elicitors that are then carried to eggs. This yolk protein, called vitellogenin, is able to bind to different bacteria and pathogenic pattern molecules. We use E. coli fragments as a bait to show how vitellogenin is necessary for the carrying of immune elicitors to eggs. These findings help to understand how insects fight pathogens and can be useful for protection of ecologically and economically important insects, such as the honey bee, that we used as a model species.


Zdroje

1. Lemaitre B, Hoffmann J. The host defense of Drosophila melanogaster. Annu Rev Immunol. 2007;25: 697–743. 17201680

2. Freitak D, Schmidtberg H, Dickel F, Lochnit G, Vogel H, Vilcinskas A. The maternal transfer of bacteria can mediate trans-generational immune priming in insects. Virulence. 2014;5: 547–54. doi: 10.4161/viru.28367 24603099

3. Sadd BM, Kleinlogel Y, Schmid-Hempel R, Schmid-Hempel P. Trans-generational immune priming in a social insect. Biol Lett. 2005;1: 386–388. 17148213

4. Schmid-Hempel P. Evolutionary ecology of insect immune defenses. Annu Rev Entomol. 2005;50: 529–551. 15471530

5. Ardia DR, Gantz JE, Schneider BC, Strebel S. Costs of immunity in insects: An induced immune response increases metabolic rate and decreases antimicrobial activity. Funct Ecol. 2012;26: 732–739.

6. Grindstaff JL, Brodie ED, Ketterson ED. Immune function across generations: integrating mechanism and evolutionary process in maternal antibody transmission. Proc Biol Sci. 2003;270: 2309–2319. 14667346

7. Finn RN. Vertebrate yolk complexes and the functional implications of phosvitins and other subdomains in vitellogenins. Biol Reprod. 2007;76: 926–935. 17314313

8. Freitak D, Heckel DG, Vogel H. Dietary-dependent trans-generational immune priming in an insect herbivore. Proc Biol Sci. 2009;276: 2617–2624. doi: 10.1098/rspb.2009.0323 19369263

9. Moret Y. “Trans-generational immune priming”: specific enhancement of the antimicrobial immune response in the mealworm beetle, Tenebrio molitor. Proc Biol Sci. 2006;273: 1399–1405.

10. Roth O, Sadd BM, Schmid-Hempel P, Kurtz J. Strain-specific priming of resistance in the red flour beetle, Tribolium castaneum. Proc Biol Sci. 2009;276: 145–51. doi: 10.1098/rspb.2008.1157 18796392

11. Hernández-Martínez P, Naseri B, Navarro-Cerrillo G, Escriche B, Ferré J, Herrero S. Increase in midgut microbiota load induces an apparent immune priming and increases tolerance to Bacillus thuringiensis. Environ Microbiol. 2010;12: 2730–7. doi: 10.1111/j.1462-2920.2010.02241.x 20482744

12. Moreau J, Martinaud G, Troussard JP, Zanchi C, Moret Y. Trans-generational immune priming is constrained by the maternal immune response in an insect. Oikos. 2012;121: 1828–1832.

13. Abdel-latief M, Hilker M. Innate immunity: Eggs of Manduca sexta are able to respond to parasitism by Trichogramma evanescens. Insect Biochem Mol Biol. 2008;38: 136–145. doi: 10.1016/j.ibmb.2007.10.001 18207075

14. López JH, Schuehly W, Crailsheim K, Riessberger-gallé U, B PRS, Riessberger-galle U. Trans-generational immune priming in honeybees Trans-generational immune priming in honeybees. Proc Biol Sci. 2014;281.

15. Zhang S, Wang S, Li H, Li L. Vitellogenin, a multivalent sensor and an antimicrobial effector. Int J Biochem Cell Biol. 2011;43: 303–5. doi: 10.1016/j.biocel.2010.11.003 21075213

16. Barchuk AR, Bitondi MMG, Simões ZLP. Effects of juvenile hormone and ecdysone on the timing of vitellogenin appearance in hemolymph of queen and worker pupae of Apis mellifera. J Insect Sci. 2002;2: 1. 15455035

17. Tong Z, Li L, Pawar R, Zhang S. Vitellogenin is an acute phase protein with bacterial-binding and inhibiting activities. Immunobiology. Elsevier; 2010;215: 898–902. doi: 10.1016/j.imbio.2009.10.001 20006406

18. Seong S-Y, Matzinger P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol. 2004;4: 469–478. 15173835

19. Cho NH, Seong SY. Apolipoproteins inhibit the innate immunity activated by necrotic cells or bacterial endotoxin. Immunology. 2009;128.

20. Havukainen H, Münch D, Baumann A, Zhong S, Halskau Ø, Krogsgaard M, et al. Vitellogenin recognizes cell damage through membrane binding and shields living cells from reactive oxygen species. J Biol Chem. 2013;288: 28369–81. doi: 10.1074/jbc.M113.465021 23897804

21. Havukainen H, Halskau Ø, Amdam G V. Social pleiotropy and the molecular evolution of honey bee vitellogenin. Molecular Ecology. 2011. pp. 5111–5113.

22. Kent CF, Issa A, Bunting AC, Zayed A. Adaptive evolution of a key gene affecting queen and worker traits in the honey bee, Apis mellifera. Mol Ecol. 2011;20: 5226–5235. doi: 10.1111/j.1365-294X.2011.05299.x 21981322

23. Tufail M, Takeda M. Molecular characteristics of insect vitellogenins. Journal of Insect Physiology. 2008. pp. 1447–1458.

24. Morandin C, Havukainen H, Kulmuni J, Dhaygude K, Trontti K, Helanterä H. Not only for egg yolk-functional and evolutionary insights from expression, selection, and structural analyses of formica ant vitellogenins. Mol Biol Evol. Oxford University Press; 2014;31: 2181–2193. doi: 10.1093/molbev/msu171 24895411

25. Tong Z, Li L, Pawar R, Zhang S. Vitellogenin is an acute phase protein with bacterial-binding and inhibiting activities. Immunobiology. Elsevier; 2010;215: 898–902. doi: 10.1016/j.imbio.2009.10.001

26. Roth Z, Weil S, Aflalo ED, Manor R, Sagi A, Khalaila I. Identification of receptor-interacting regions of vitellogenin within evolutionarily conserved β-sheet structures by using a peptide array. ChemBioChem. 2013;14: 1116–1122. doi: 10.1002/cbic.201300152 23733483

27. Eggert H, Kurtz J, Diddens-de Buhr MF. Different effects of paternal trans-generational immune priming on survival and immunity in step and genetic offspring. Proc Biol Sci. 2014;281. doi: 10.1098/rspb.2014.2089

28. Ramírez V, López A, Mauch-Mani B, Gil MJ, Vera P. An Extracellular Subtilase Switch for Immune Priming in Arabidopsis. PLoS Pathog. 2013;9.

29. Bebas P, Kotwica J, Joachimiak E, Giebultowicz JM. Yolk protein is expressed in the insect testis and interacts with sperm. BMC Dev Biol. 2008;8: 64. doi: 10.1186/1471-213X-8-64 18549506

30. Foley K, Fazio G, Jensen AB, Hughes WOH. The distribution of Aspergillus spp. opportunistic parasites in hives and their pathogenicity to honey bees. Vet Microbiol. 2014;169: 203–210. doi: 10.1016/j.vetmic.2013.11.029 24485932

31. Anderson KE, Sheehan TH, Mott BM, Maes P, Snyder L, Schwan MR, et al. Microbial ecology of the hive and pollination landscape: Bacterial associates from floral nectar, the alimentary tract and stored food of honey bees (Apis mellifera). PLoS One. 2013;8.

32. Strauss U, Human H, Gauthier L, Crewe RM, Dietemann V, Pirk CWW. Seasonal prevalence of pathogens and parasites in the savannah honeybee (Apis mellifera scutellata). J Invertebr Pathol. 2013;114: 45–52. doi: 10.1016/j.jip.2013.05.003 23702244

33. Havukainen H, Halskau Ø, Skjaerven L, Smedal B, Amdam G V. Deconstructing honeybee vitellogenin: novel 40 kDa fragment assigned to its N terminus. J Exp Biol. 2011;214: 582–592. doi: 10.1242/jeb.048314 21270306

34. Seehuus S-C, Norberg K, Krekling T, Fondrk K, Amdam G V. Immunogold localization of vitellogenin in the ovaries, hypopharyngeal glands and head fat bodies of honeybee workers, Apis mellifera. J Insect Sci. 2007;7: 1–14.

35. Wang Z, Wilhelmsson C, Hyrsl P, Loof TG, Dobes P, Klupp M, et al. Pathogen entrapment by transglutaminase—A conserved early innate immune mechanism. PLoS Pathog. 2010;6.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#