#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Vpu Exploits the Cross-Talk between BST2 and the ILT7 Receptor to Suppress Anti-HIV-1 Responses by Plasmacytoid Dendritic Cells


Plasmacytoid dendritic cells (pDCs) produce large quantities of type I interferon (IFN-I) upon stimulation by many viruses, including HIV. Their activation is very effective following cell contacts with HIV-1-infected CD4+ T cells. We investigated whether HIV-1 could regulate the antiviral responses of pDCs triggered upon sensing of infected cells. We show that HIV-1 suppresses the levels of IFN-I produced by pDCs through a process that requires expression of the Vpu accessory protein in virus-producing cells. A well-described role of Vpu is to promote efficient HIV-1 production by counteracting BST2, a host factor that entraps nascent viral particle at the cell surface. Apart from its antiviral activity, BST2 was reported to inhibit IFN-I production by pDCs through binding and activation of the ILT7 pDC-specific inhibitory receptor. Our results reveal that through a highly sophisticated targeted regulation of BST2 levels at the surface of infected cells, Vpu promotes HIV-1 release and limits IFN-I production by pDCs via the negative signaling exerted by the BST2-ILT7 pair. Overall, this study sheds light on a novel Vpu-BST2 interaction that allows HIV-1 to escape pDC antiviral responses. This modulation of pDC antiviral response by HIV Vpu may facilitate the initial viral expansion during acute infection.


Vyšlo v časopise: Vpu Exploits the Cross-Talk between BST2 and the ILT7 Receptor to Suppress Anti-HIV-1 Responses by Plasmacytoid Dendritic Cells. PLoS Pathog 11(7): e32767. doi:10.1371/journal.ppat.1005024
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1005024

Souhrn

Plasmacytoid dendritic cells (pDCs) produce large quantities of type I interferon (IFN-I) upon stimulation by many viruses, including HIV. Their activation is very effective following cell contacts with HIV-1-infected CD4+ T cells. We investigated whether HIV-1 could regulate the antiviral responses of pDCs triggered upon sensing of infected cells. We show that HIV-1 suppresses the levels of IFN-I produced by pDCs through a process that requires expression of the Vpu accessory protein in virus-producing cells. A well-described role of Vpu is to promote efficient HIV-1 production by counteracting BST2, a host factor that entraps nascent viral particle at the cell surface. Apart from its antiviral activity, BST2 was reported to inhibit IFN-I production by pDCs through binding and activation of the ILT7 pDC-specific inhibitory receptor. Our results reveal that through a highly sophisticated targeted regulation of BST2 levels at the surface of infected cells, Vpu promotes HIV-1 release and limits IFN-I production by pDCs via the negative signaling exerted by the BST2-ILT7 pair. Overall, this study sheds light on a novel Vpu-BST2 interaction that allows HIV-1 to escape pDC antiviral responses. This modulation of pDC antiviral response by HIV Vpu may facilitate the initial viral expansion during acute infection.


Zdroje

1. Swiecki M, Colonna M (2010) Unraveling the functions of plasmacytoid dendritic cells during viral infections, autoimmunity, and tolerance. Immunol Rev 234: 142–162. doi: 10.1111/j.0105-2896.2009.00881.x 20193017

2. Fitzgerald-Bocarsly P, Jacobs ES (2010) Plasmacytoid dendritic cells in HIV infection: striking a delicate balance. J Leukoc Biol 87: 609–620. doi: 10.1189/jlb.0909635 20145197

3. Malleret B, Maneglier B, Karlsson I, Lebon P, Nascimbeni M, et al. (2008) Primary infection with simian immunodeficiency virus: plasmacytoid dendritic cell homing to lymph nodes, type I interferon, and immune suppression. Blood 112: 4598–4608. doi: 10.1182/blood-2008-06-162651 18787223

4. Campillo-Gimenez L, Laforge M, Fay M, Brussel A, Cumont MC, et al. (2010) Nonpathogenesis of simian immunodeficiency virus infection is associated with reduced inflammation and recruitment of plasmacytoid dendritic cells to lymph nodes, not to lack of an interferon type I response, during the acute phase. J Virol 84: 1838–1846. doi: 10.1128/JVI.01496-09 19939930

5. Li G, Cheng M, Nunoya J, Cheng L, Guo H, et al. (2014) Plasmacytoid dendritic cells suppress HIV-1 replication but contribute to HIV-1 induced immunopathogenesis in humanized mice. PLoS Pathog 10: e1004291. doi: 10.1371/journal.ppat.1004291 25077616

6. Lepelley A, Louis S, Sourisseau M, Law HK, Pothlichet J, et al. (2011) Innate sensing of HIV-infected cells. PLoS Pathog 7: e1001284. doi: 10.1371/journal.ppat.1001284 21379343

7. Fonteneau JF, Larsson M, Beignon AS, McKenna K, Dasilva I, et al. (2004) Human immunodeficiency virus type 1 activates plasmacytoid dendritic cells and concomitantly induces the bystander maturation of myeloid dendritic cells. J Virol 78: 5223–5232. 15113904

8. Beignon AS, McKenna K, Skoberne M, Manches O, DaSilva I, et al. (2005) Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor-viral RNA interactions. J Clin Invest 115: 3265–3275. 16224540

9. Manches O, Munn D, Fallahi A, Lifson J, Chaperot L, et al. (2008) HIV-activated human plasmacytoid DCs induce Tregs through an indoleamine 2,3-dioxygenase-dependent mechanism. J Clin Invest 118: 3431–3439. doi: 10.1172/JCI34823 18776940

10. Schmidt B, Ashlock BM, Foster H, Fujimura SH, Levy JA (2005) HIV-infected cells are major inducers of plasmacytoid dendritic cell interferon production, maturation, and migration. Virology 343: 256–266. 16278001

11. Iwasaki A (2012) Innate immune recognition of HIV-1. Immunity 37: 389–398. doi: 10.1016/j.immuni.2012.08.011 22999945

12. Martinelli E, Cicala C, Van Ryk D, Goode DJ, Macleod K, et al. (2007) HIV-1 gp120 inhibits TLR9-mediated activation and IFN-{alpha} secretion in plasmacytoid dendritic cells. Proc Natl Acad Sci U S A 104: 3396–3401. 17360657

13. Chung NP, Matthews K, Klasse PJ, Sanders RW, Moore JP (2012) HIV-1 gp120 impairs the induction of B cell responses by TLR9-activated plasmacytoid dendritic cells. J Immunol 189: 5257–5265. doi: 10.4049/jimmunol.1201905 23100517

14. Neil SJ (2013) The antiviral activities of tetherin. Curr Top Microbiol Immunol 371: 67–104. doi: 10.1007/978-3-642-37765-5_3 23686232

15. Hinz A, Miguet N, Natrajan G, Usami Y, Yamanaka H, et al. (2010) Structural basis of HIV-1 tethering to membranes by the BST-2/tetherin ectodomain. Cell Host Microbe 7: 314–323. doi: 10.1016/j.chom.2010.03.005 20399176

16. Kupzig S, Korolchuk V, Rollason R, Sugden A, Wilde A, et al. (2003) Bst-2/HM1.24 is a raft-associated apical membrane protein with an unusual topology. Traffic 4: 694–709. 12956872

17. Neil SJ, Zang T, Bieniasz PD (2008) Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451: 425–430. doi: 10.1038/nature06553 18200009

18. Van Damme N, Goff D, Katsura C, Jorgenson RL, Mitchell R, et al. (2008) The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe 3: 245–252. doi: 10.1016/j.chom.2008.03.001 18342597

19. Casartelli N, Sourisseau M, Feldmann J, Guivel-Benhassine F, Mallet A, et al. (2010) Tetherin restricts productive HIV-1 cell-to-cell transmission. PLoS Pathog 6: e1000955. doi: 10.1371/journal.ppat.1000955 20585562

20. Giese S, Marsh M (2014) Tetherin can restrict cell-free and cell-cell transmission of HIV from primary macrophages to T cells. PLoS Pathog 10: e1004189. doi: 10.1371/journal.ppat.1004189 24991932

21. Jolly C, Booth NJ, Neil SJ (2010) Cell-cell spread of human immunodeficiency virus type 1 overcomes tetherin/BST-2-mediated restriction in T cells. J Virol 84: 12185–12199. doi: 10.1128/JVI.01447-10 20861257

22. Venkatesh S, Bieniasz PD (2013) Mechanism of HIV-1 virion entrapment by tetherin. PLoS Pathog 9: e1003483. doi: 10.1371/journal.ppat.1003483 23874200

23. Cao W, Bover L (2010) Signaling and ligand interaction of ILT7: receptor-mediated regulatory mechanisms for plasmacytoid dendritic cells. Immunol Rev 234: 163–176. doi: 10.1111/j.0105-2896.2009.00867.x 20193018

24. Cao W, Rosen DB, Ito T, Bover L, Bao M, et al. (2006) Plasmacytoid dendritic cell-specific receptor ILT7-Fc epsilonRI gamma inhibits Toll-like receptor-induced interferon production. J Exp Med 203: 1399–1405. 16735691

25. Cao W, Bover L, Cho M, Wen X, Hanabuchi S, et al. (2009) Regulation of TLR7/9 responses in plasmacytoid dendritic cells by BST2 and ILT7 receptor interaction. J Exp Med 206: 1603–1614. doi: 10.1084/jem.20090547 19564354

26. Miyagi E, Andrew AJ, Kao S, Strebel K (2009) Vpu enhances HIV-1 virus release in the absence of Bst-2 cell surface down-modulation and intracellular depletion. Proc Natl Acad Sci U S A 106: 2868–2873. doi: 10.1073/pnas.0813223106 19196977

27. Kandimalla ER, Bhagat L, Wang D, Yu D, Sullivan T, et al. (2013) Design, synthesis and biological evaluation of novel antagonist compounds of Toll-like receptors 7, 8 and 9. Nucleic Acids Res 41: 3947–3961. doi: 10.1093/nar/gkt078 23396449

28. Vigan R, Neil SJ (2010) Determinants of tetherin antagonism in the transmembrane domain of the human immunodeficiency virus type 1 Vpu protein. J Virol 84: 12958–12970. doi: 10.1128/JVI.01699-10 20926557

29. Miyagi E, Andrew A, Kao S, Yoshida T, Strebel K (2011) Antibody-mediated enhancement of HIV-1 and HIV-2 production from BST-2/tetherin-positive cells. J Virol 85: 11981–11994. doi: 10.1128/JVI.05176-11 21917971

30. McNatt MW, Zang T, Bieniasz PD (2013) Vpu binds directly to tetherin and displaces it from nascent virions. PLoS Pathog 9: e1003299. doi: 10.1371/journal.ppat.1003299 23633949

31. Lewinski MK, Jafari M, Zhang H, Opella SJ, Guatelli J (2015) Membrane Anchoring by a C-terminal Tryptophan Enables HIV-1 Vpu to Displace Bone Marrow Stromal Antigen 2 (BST2) from Sites of Viral Assembly. J Biol Chem 290: 10919–10933. doi: 10.1074/jbc.M114.630095 25759385

32. Dube M, Paquay C, Roy BB, Bego MG, Mercier J, et al. (2011) HIV-1 Vpu antagonizes BST-2 by interfering mainly with the trafficking of newly synthesized BST-2 to the cell surface. Traffic 12: 1714–1729. doi: 10.1111/j.1600-0854.2011.01277.x 21902775

33. Cocka LJ, Bates P (2012) Identification of alternatively translated Tetherin isoforms with differing antiviral and signaling activities. PLoS Pathog 8: e1002931. doi: 10.1371/journal.ppat.1002931 23028328

34. Weinelt J, Neil SJ (2014) Differential sensitivities of tetherin isoforms to counteraction by primate lentiviruses. J Virol 88: 5845–5858. doi: 10.1128/JVI.03818-13 24623426

35. Jolly C, Sattentau QJ (2007) Human immunodeficiency virus type 1 assembly, budding, and cell-cell spread in T cells take place in tetraspanin-enriched plasma membrane domains. J Virol 81: 7873–7884. 17522207

36. Dube M, Bego MG, Paquay C, Cohen EA (2010) Modulation of HIV-1-host interaction: role of the Vpu accessory protein. Retrovirology 7: 114. doi: 10.1186/1742-4690-7-114 21176220

37. Galao RP, Pickering S, Curnock R, Neil SJ (2014) Retroviral retention activates a Syk-dependent HemITAM in human tetherin. Cell Host Microbe 16: 291–303. doi: 10.1016/j.chom.2014.08.005 25211072

38. Galao RP, Le Tortorec A, Pickering S, Kueck T, Neil SJ (2012) Innate sensing of HIV-1 assembly by Tetherin induces NFkappaB-dependent proinflammatory responses. Cell Host Microbe 12: 633–644. doi: 10.1016/j.chom.2012.10.007 23159053

39. Zhang F, Landford WN, Ng M, McNatt MW, Bieniasz PD, et al. (2011) SIV Nef proteins recruit the AP-2 complex to antagonize Tetherin and facilitate virion release. PLoS Pathog 7: e1002039. doi: 10.1371/journal.ppat.1002039 21625568

40. Le Tortorec A, Neil SJ (2009) Antagonism to and intracellular sequestration of human tetherin by the human immunodeficiency virus type 2 envelope glycoprotein. J Virol 83: 11966–11978. doi: 10.1128/JVI.01515-09 19740980

41. Serra-Moreno R, Zimmermann K, Stern LJ, Evans DT (2013) Tetherin/BST-2 antagonism by Nef depends on a direct physical interaction between Nef and tetherin, and on clathrin-mediated endocytosis. PLoS Pathog 9: e1003487. doi: 10.1371/journal.ppat.1003487 23853598

42. Lau D, Kwan W, Guatelli J (2011) Role of the endocytic pathway in the counteraction of BST-2 by human lentiviral pathogens. J Virol 85: 9834–9846. doi: 10.1128/JVI.02633-10 21813615

43. Sauter D, Unterweger D, Vogl M, Usmani SM, Heigele A, et al. (2012) Human tetherin exerts strong selection pressure on the HIV-1 group N Vpu protein. PLoS Pathog 8: e1003093. doi: 10.1371/journal.ppat.1003093 23308067

44. Kluge SF, Mack K, Iyer SS, Pujol FM, Heigele A, et al. (2014) Nef proteins of epidemic HIV-1 group O strains antagonize human tetherin. Cell Host Microbe 16: 639–650. doi: 10.1016/j.chom.2014.10.002 25525794

45. Tavano B, Galao RP, Graham DR, Neil SJ, Aquino VN, et al. (2013) Ig-like transcript 7, but not bone marrow stromal cell antigen 2 (also known as HM1.24, tetherin, or CD317), modulates plasmacytoid dendritic cell function in primary human blood leukocytes. J Immunol 190: 2622–2630. doi: 10.4049/jimmunol.1202391 23401591

46. Megjugorac NJ, Jacobs ES, Izaguirre AG, George TC, Gupta G, et al. (2007) Image-based study of interferongenic interactions between plasmacytoid dendritic cells and HSV-infected monocyte-derived dendritic cells. Immunol Invest 36: 739–761. 18161527

47. Sato K, Misawa N, Fukuhara M, Iwami S, An DS, et al. (2012) Vpu augments the initial burst phase of HIV-1 propagation and downregulates BST2 and CD4 in humanized mice. J Virol 86: 5000–5013. doi: 10.1128/JVI.07062-11 22357275

48. Dave VP, Hajjar F, Dieng MM, Haddad E, Cohen EA (2013) Efficient BST2 antagonism by Vpu is critical for early HIV-1 dissemination in humanized mice. Retrovirology 10: 128. doi: 10.1186/1742-4690-10-128 24195843

49. Haase AT (2010) Targeting early infection to prevent HIV-1 mucosal transmission. Nature 464: 217–223. doi: 10.1038/nature08757 20220840

50. Bego MG, Dube M, Mercier J, Cohen EA (2009) Effect of calcium-modulating cyclophilin ligand on human immunodeficiency virus type 1 particle release and cell surface expression of tetherin. J Virol 83: 13032–13036. doi: 10.1128/JVI.01786-09 19793820

51. Dube M, Roy BB, Guiot-Guillain P, Binette J, Mercier J, et al. (2010) Antagonism of tetherin restriction of HIV-1 release by Vpu involves binding and sequestration of the restriction factor in a perinuclear compartment. PLoS Pathog 6: e1000856. doi: 10.1371/journal.ppat.1000856 20386718

52. Buchacher A, Predl R, Strutzenberger K, Steinfellner W, Trkola A, et al. (1994) Generation of human monoclonal antibodies against HIV-1 proteins; electrofusion and Epstein-Barr virus transformation for peripheral blood lymphocyte immortalization. AIDS Res Hum Retroviruses 10: 359–369. 7520721

53. Trkola A, Purtscher M, Muster T, Ballaun C, Buchacher A, et al. (1996) Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J Virol 70: 1100–1108. 8551569

54. Mascola JR, Lewis MG, Stiegler G, Harris D, VanCott TC, et al. (1999) Protection of Macaques against pathogenic simian/human immunodeficiency virus 89.6PD by passive transfer of neutralizing antibodies. J Virol 73: 4009–4018. 10196297

55. Etemad-Moghadam B, Sun Y, Nicholson EK, Karlsson GB, Schenten D, et al. (1999) Determinants of neutralization resistance in the envelope glycoproteins of a simian-human immunodeficiency virus passaged in vivo. J Virol 73: 8873–8879. 10482646

56. Crawford JM, Earl PL, Moss B, Reimann KA, Wyand MS, et al. (1999) Characterization of primary isolate-like variants of simian-human immunodeficiency virus. J Virol 73: 10199–10207. 10559336

57. Ablashi DV, Berneman ZN, Kramarsky B, Whitman J Jr., Asano Y, et al. (1995) Human herpesvirus-7 (HHV-7): current status. Clin Diagn Virol 4: 1–13. 15566823

58. Keele BF, Giorgi EE, Salazar-Gonzalez JF, Decker JM, Pham KT, et al. (2008) Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc Natl Acad Sci U S A 105: 7552–7557. doi: 10.1073/pnas.0802203105 18490657

59. Salazar-Gonzalez JF, Bailes E, Pham KT, Salazar MG, Guffey MB, et al. (2008) Deciphering human immunodeficiency virus type 1 transmission and early envelope diversification by single-genome amplification and sequencing. J Virol 82: 3952–3970. doi: 10.1128/JVI.02660-07 18256145

60. Lee HY, Giorgi EE, Keele BF, Gaschen B, Athreya GS, et al. (2009) Modeling sequence evolution in acute HIV-1 infection. J Theor Biol 261: 341–360. doi: 10.1016/j.jtbi.2009.07.038 19660475

61. Salazar-Gonzalez JF, Salazar MG, Keele BF, Learn GH, Giorgi EE, et al. (2009) Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection. J Exp Med 206: 1273–1289. doi: 10.1084/jem.20090378 19487424

62. Cohen GB, Gandhi RT, Davis DM, Mandelboim O, Chen BK, et al. (1999) The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells. Immunity 10: 661–671. 10403641

63. Klimkait T, Strebel K, Hoggan MD, Martin MA, Orenstein JM (1990) The human immunodeficiency virus type 1-specific protein vpu is required for efficient virus maturation and release. J Virol 64: 621–629. 2404139

64. Westervelt P, Henkel T, Trowbridge DB, Orenstein J, Heuser J, et al. (1992) Dual regulation of silent and productive infection in monocytes by distinct human immunodeficiency virus type 1 determinants. J Virol 66: 3925–3931. 1533883

65. Trowitzsch S, Bieniossek C, Nie Y, Garzoni F, Berger I (2010) New baculovirus expression tools for recombinant protein complex production. J Struct Biol 172: 45–54. doi: 10.1016/j.jsb.2010.02.010 20178849

66. Bego MG, Mercier J, Cohen EA (2012) Virus-activated interferon regulatory factor 7 upregulates expression of the interferon-regulated BST2 gene independently of interferon signaling. J Virol 86: 3513–3527. doi: 10.1128/JVI.06971-11 22301143

67. Dube M, Roy BB, Guiot-Guillain P, Mercier J, Binette J, et al. (2009) Suppression of Tetherin-restricting activity upon human immunodeficiency virus type 1 particle release correlates with localization of Vpu in the trans-Golgi network. J Virol 83: 4574–4590. doi: 10.1128/JVI.01800-08 19244337

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#