#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Suppression of Long-Lived Humoral Immunity Following Infection


Infections with the Lyme Disease agent, Borrelia burgdorferi, often fail to generate long-term protective immunity. We show here that this is because the immune system of the Borrelia-infected host generates only short-lived, structurally abnormal and non-functional germinal centers. These germinal centers fail to induce memory B cells and long-lived antibody-producing plasma cells, leaving the host susceptible to reinfection with Bb. This inability to induce long-term immunity was not due to the nature of Borrelia antigens, as even T-dependent antigens of Borrelia were unable to induce such responses. Moreover, influenza vaccine antigens, when applied during Borrelia-infection, failed to induce strong antibody responses and immune-protection from influenza challenge. This data illustrate the potent, if temporal, immune suppression induced by Borrelia-infection. Collectively, the data reveal a new mechanism by which B. burgdorferi subverts the adaptive immune response.


Vyšlo v časopise: Suppression of Long-Lived Humoral Immunity Following Infection. PLoS Pathog 11(7): e32767. doi:10.1371/journal.ppat.1004976
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004976

Souhrn

Infections with the Lyme Disease agent, Borrelia burgdorferi, often fail to generate long-term protective immunity. We show here that this is because the immune system of the Borrelia-infected host generates only short-lived, structurally abnormal and non-functional germinal centers. These germinal centers fail to induce memory B cells and long-lived antibody-producing plasma cells, leaving the host susceptible to reinfection with Bb. This inability to induce long-term immunity was not due to the nature of Borrelia antigens, as even T-dependent antigens of Borrelia were unable to induce such responses. Moreover, influenza vaccine antigens, when applied during Borrelia-infection, failed to induce strong antibody responses and immune-protection from influenza challenge. This data illustrate the potent, if temporal, immune suppression induced by Borrelia-infection. Collectively, the data reveal a new mechanism by which B. burgdorferi subverts the adaptive immune response.


Zdroje

1. Steere AC, Coburn J, Glickstein L (2004) The emergence of Lyme disease. J Clin Invest 113: 1093–1101. 15085185

2. Hubalek Z (2009) Epidemiology of lyme borreliosis. Curr Probl Dermatol 37: 31–50. doi: 10.1159/000213069 19367096

3. Radolf JD, Caimano MJ, Stevenson B, Hu LT (2012) Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol 10: 87–99. doi: 10.1038/nrmicro2714 22230951

4. Kung F, Anguita J, Pal U (2013) Borrelia burgdorferi and tick proteins supporting pathogen persistence in the vector. Future Microbiol 8: 41–56. doi: 10.2217/fmb.12.121 23252492

5. Kenedy MR, Lenhart TR, Akins DR (2012) The role of Borrelia burgdorferi outer surface proteins. FEMS Immunol Med Microbiol 66: 1–19. doi: 10.1111/j.1574-695X.2012.00980.x 22540535

6. Rogovskyy AS, Bankhead T (2013) Variable VlsE is critical for host reinfection by the Lyme disease spirochete. PloS one 8: e61226. doi: 10.1371/journal.pone.0061226 23593438

7. Kraiczy P, Stevenson B (2013) Complement regulator-acquiring surface proteins of Borrelia burgdorferi: Structure, function and regulation of gene expression. Ticks Tick Borne Dis 4: 26–34. doi: 10.1016/j.ttbdis.2012.10.039 23219363

8. de Taeye SW, Kreuk L, van Dam AP, Hovius JW, Schuijt TJ (2013) Complement evasion by Borrelia burgdorferi: it takes three to tango. Trends Parasitol 29: 119–128. doi: 10.1016/j.pt.2012.12.001 23298533

9. Nadelman RB, Hanincova K, Mukherjee P, Liveris D, Nowakowski J, et al. (2012) Differentiation of reinfection from relapse in recurrent Lyme disease. N Engl J Med 367: 1883–1890. doi: 10.1056/NEJMoa1114362 23150958

10. Nowakowski J, Nadelman RB, Sell R, McKenna D, Cavaliere LF, et al. (2003) Long-term follow-up of patients with culture-confirmed Lyme disease. Am J Med 115: 91–96. 12893393

11. Nowakowski J, Schwartz I, Nadelman RB, Liveris D, Aguero-Rosenfeld M, et al. (1997) Culture-confirmed infection and reinfection with Borrelia burgdorferi. Ann Intern Med 127: 130–132. 9230002

12. LaRocca TJ, Benach JL (2008) The important and diverse roles of antibodies in the host response to Borrelia infections. Curr Top Microbiol Immunol 319: 63–103. 18080415

13. McKisic MD, Barthold SW (2000) T-cell-independent responses to Borrelia burgdorferi are critical for protective immunity and resolution of lyme disease. Infect Immun 68: 5190–5197. 10948143

14. Barthold SW, deSouza M, Feng S (1996) Serum-mediated resolution of Lyme arthritis in mice. Lab Invest 74: 57–67. 8569198

15. Liang FT, Brown EL, Wang T, Iozzo RV, Fikrig E (2004) Protective niche for Borrelia burgdorferi to evade humoral immunity. Am J Pathol 165: 977–985. 15331421

16. Piesman J, Dolan MC, Happ CM, Luft BJ, Rooney SE, et al. (1997) Duration of immunity to reinfection with tick-transmitted Borrelia burgdorferi in naturally infected mice. Infect Immun 65: 4043–4047. 9317005

17. Fikrig E, Bockenstedt LK, Barthold SW, Chen M, Tao H, et al. (1994) Sera from patients with chronic Lyme disease protect mice from Lyme borreliosis. J Infect Dis 169: 568–574. 8158028

18. Aguero-Rosenfeld ME, Nowakowski J, Bittker S, Cooper D, Nadelman RB, et al. (1996) Evolution of the serologic response to Borrelia burgdorferi in treated patients with culture-confirmed erythema migrans. J Clin Microbiol 34: 1–9. 8748261

19. Hammers-Berggren S, Lebech AM, Karlsson M, Svenungsson B, Hansen K, et al. (1994) Serological follow-up after treatment of patients with erythema migrans and neuroborreliosis. J Clin Microbiol 32: 1519–1525. 8077398

20. Tunev SS, Hastey CJ, Hodzic E, Feng S, Barthold SW, et al. (2011) Lymphoadenopathy during lyme borreliosis is caused by spirochete migration-induced specific B cell activation. PLoS Pathog 7: e1002066. doi: 10.1371/journal.ppat.1002066 21637808

21. Hastey CJ, Ochoa J, Olsen KJ, Barthold SW, Baumgarth N (2014) MyD88- and TRIF-independent induction of type I interferon drives naive B cell accumulation but not loss of lymph node architecture in Lyme disease. Infect Immun 82: 1548–1558. doi: 10.1128/IAI.00969-13 24452685

22. Hastey CJ, Elsner RA, Barthold SW, Baumgarth N (2012) Delays and diversions mark the development of B cell responses to Borrelia burgdorferi infection. J Immunol 188: 5612–5622. doi: 10.4049/jimmunol.1103735 22547698

23. Good-Jacobson KL, Shlomchik MJ (2010) Plasticity and heterogeneity in the generation of memory B cells and long-lived plasma cells: the influence of germinal center interactions and dynamics. J Immunol 185: 3117–3125. doi: 10.4049/jimmunol.1001155 20814029

24. Feng S, Hodzic E, Stevenson B, Barthold SW (1998) Humoral immunity to Borrelia burgdorferi N40 decorin binding proteins during infection of laboratory mice. Infect Immun 66: 2827–2835. 9596756

25. Barthold SW, Hodzic E, Tunev S, Feng S (2006) Antibody-mediated disease remission in the mouse model of lyme borreliosis. Infect Immun 74: 4817–4825. 16861670

26. Gilmore RD Jr., Kappel KJ, Dolan MC, Burkot TR, Johnson BJ (1996) Outer surface protein C (OspC), but not P39, is a protective immunogen against a tick-transmitted Borrelia burgdorferi challenge: evidence for a conformational protective epitope in OspC. Infect Immun 64: 2234–2239. 8675332

27. Pal U, Wang P, Bao F, Yang X, Samanta S, et al. (2008) Borrelia burgdorferi basic membrane proteins A and B participate in the genesis of Lyme arthritis. J Exp Med 205: 133–141. doi: 10.1084/jem.20070962 18166585

28. Elsner RA, Hastey CJ, Baumgarth N (2015) CD4+ T cells promote antibody production but not sustained affinity maturation during Borrelia burgdorferi infection. Infect Immun 83: 48–56. doi: 10.1128/IAI.02471-14 25312948

29. Hastey CJ, Elsner RA, Barthold SW, Baumgarth N (2012) Delays and diversions mark the development of B cell responses to Borrelia burgdorferi infection. Journal of Immunology 188: 5612–5622.

30. MacLennan IC, Toellner KM, Cunningham AF, Serre K, Sze DM, et al. (2003) Extrafollicular antibody responses. Immunol Rev 194: 8–18. 12846803

31. Shlomchik MJ, Weisel F (2012) Germinal center selection and the development of memory B and plasma cells. Immunol Rev 247: 52–63. doi: 10.1111/j.1600-065X.2012.01124.x 22500831

32. Vinuesa CG, Linterman MA, Goodnow CC, Randall KL (2010) T cells and follicular dendritic cells in germinal center B-cell formation and selection. Immunol Rev 237: 72–89. doi: 10.1111/j.1600-065X.2010.00937.x 20727030

33. Elsner RA, Ernst DN, Baumgarth N (2012) Single and coexpression of CXCR4 and CXCR5 identifies CD4 T helper cells in distinct lymph node niches during influenza virus infection. J Virol 86: 7146–7157. doi: 10.1128/JVI.06904-11 22532671

34. Taylor PR, Pickering MC, Kosco-Vilbois MH, Walport MJ, Botto M, et al. (2002) The follicular dendritic cell restricted epitope, FDC-M2, is complement C4; localization of immune complexes in mouse tissues. Eur J Immunol 32: 1888–1896. 12115608

35. Allen CD, Cyster JG (2008) Follicular dendritic cell networks of primary follicles and germinal centers: phenotype and function. Semin Immunol 20: 14–25. doi: 10.1016/j.smim.2007.12.001 18261920

36. Hovius KE, Rijpkema SG, Westers P, van der Zeijst BA, van Asten FJ, et al. (1999) A serological study of cohorts of young dogs, naturally exposed to Ixodes ricinus ticks, indicates seasonal reinfection by Borrelia burgdorferi sensu lato. Vet Q 21: 16–20. 9990702

37. Baum E, Grosenbaugh DA, Barbour AG (2014) Diversity of antibody responses to Borrelia burgdorferi in experimentally infected beagle dogs. Clin Vaccine Immunol 21: 838–846. doi: 10.1128/CVI.00018-14 24695775

38. Racine R, Jones DD, Chatterjee M, McLaughlin M, Macnamara KC, et al. (2010) Impaired germinal center responses and suppression of local IgG production during intracellular bacterial infection. J Immunol 184: 5085–5093. doi: 10.4049/jimmunol.0902710 20351185

39. Pietikainen J, Meri T, Blom AM, Meri S (2010) Binding of the complement inhibitor C4b-binding protein to Lyme disease Borreliae. Mol Immunol 47: 1299–1305. doi: 10.1016/j.molimm.2009.11.028 20022381

40. Kyu SY, Kobie J, Yang H, Zand MS, Topham DJ, et al. (2009) Frequencies of human influenza-specific antibody secreting cells or plasmablasts post vaccination from fresh and frozen peripheral blood mononuclear cells. J Immunol Methods 340: 42–47. doi: 10.1016/j.jim.2008.09.025 18996127

41. Krause PJ, McKay K, Thompson CA, Sikand VK, Lentz R, et al. (2002) Disease-specific diagnosis of coinfecting tickborne zoonoses: babesiosis, human granulocytic ehrlichiosis, and Lyme disease. Clin Infect Dis 34: 1184–1191. 11941544

42. Zeidner NS, Dolan MC, Massung R, Piesman J, Fish D (2000) Coinfection with Borrelia burgdorferi and the agent of human granulocytic ehrlichiosis suppresses IL-2 and IFN gamma production and promotes an IL-4 response in C3H/HeJ mice. Parasite Immunol 22: 581–588. 11116438

43. Prusinski MA, Kokas JE, Hukey KT, Kogut SJ, Lee J, et al. (2014) Prevalence of Borrelia burgdorferi (Spirochaetales: Spirochaetaceae), Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae), and Babesia microti (Piroplasmida: Babesiidae) in Ixodes scapularis (Acari: Ixodidae) collected from recreational lands in the Hudson Valley Region, New York State. J Med Entomol 51: 226–236. 24605473

44. Kirberg J, Baron A, Jakob S, Rolink A, Karjalainen K, et al. (1994) Thymic selection of CD8+ single positive cells with a class II major histocompatibility complex-restricted receptor. J Exp Med 180: 25–34. 8006585

45. Feng S, Hodzic E, Freet K, Barthold SW (2003) Immunogenicity of Borrelia burgdorferi arthritis-related protein. Infect Immun 71: 7211–7214. 14638819

46. Doucett VP, Gerhard W, Owler K, Curry D, Brown L, et al. (2005) Enumeration and characterization of virus-specific B cells by multicolor flow cytometry. J Immunol Methods 303: 40–52. 16045923

47. Rothaeusler K, Baumgarth N (2006) Evaluation of intranuclear BrdU detection procedures for use in multicolor flow cytometry. Cytometry A 69: 249–259. 16538653

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#