#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Identification of Caspase Cleavage Sites in KSHV Latency-Associated Nuclear Antigen and Their Effects on Caspase-Related Host Defense Responses


Upon infecting a target cell, viruses must be able to overcome cellular defense responses to survive. Two of the most important cellular defense responses against viruses are apoptosis and the inflammasome, a component of the innate immune response. Apoptosis, a programmed cell death, functions to limit the spread of viruses by destroying the infected cell while innate immune responses control viral infections through other means. Both apoptosis and the inflammasome are mediated by caspases. However, many viruses are known to encode proteins that block, suppress or delay caspase activity following cellular infection in order to block cell death and interfere with the inflammasome. We show that LANA undergoes caspase-dependent cleavage in Kaposi’s sarcoma associated herpesvirus (KSHV)-infected cells, especially when exposed to oxidative stress. Through peptide, sequence and mutational analysis, we identified two sites for caspase cleavage in KSHV LANA, one in the N-terminal region and the other in the C-terminal region. Using synthetic peptides of these cleavage sites, we show that the C-terminal site can inhibit cleavage of poly (ADP-ribose) polymerase and enhance cellular survival. Furthermore, we demonstrate that this synthetic peptide inhibits the inflammasome response as evidenced by decreased interleukin-1beta (IL-1β) production. Mutation of these cleavage sites in LANA leads to a significant increase in the inflammasome response indicated by increased IL-1β production compared to wild-type LANA. Taken in total, these results provide evidence that these cleavage sites in LANA participate both in delaying apoptosis and blunting aspects of the innate immune response. These studies provide new insights into the mechanisms by which KSHV obviates the cellular defense responses that are activated following virus infection.


Vyšlo v časopise: Identification of Caspase Cleavage Sites in KSHV Latency-Associated Nuclear Antigen and Their Effects on Caspase-Related Host Defense Responses. PLoS Pathog 11(7): e32767. doi:10.1371/journal.ppat.1005064
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1005064

Souhrn

Upon infecting a target cell, viruses must be able to overcome cellular defense responses to survive. Two of the most important cellular defense responses against viruses are apoptosis and the inflammasome, a component of the innate immune response. Apoptosis, a programmed cell death, functions to limit the spread of viruses by destroying the infected cell while innate immune responses control viral infections through other means. Both apoptosis and the inflammasome are mediated by caspases. However, many viruses are known to encode proteins that block, suppress or delay caspase activity following cellular infection in order to block cell death and interfere with the inflammasome. We show that LANA undergoes caspase-dependent cleavage in Kaposi’s sarcoma associated herpesvirus (KSHV)-infected cells, especially when exposed to oxidative stress. Through peptide, sequence and mutational analysis, we identified two sites for caspase cleavage in KSHV LANA, one in the N-terminal region and the other in the C-terminal region. Using synthetic peptides of these cleavage sites, we show that the C-terminal site can inhibit cleavage of poly (ADP-ribose) polymerase and enhance cellular survival. Furthermore, we demonstrate that this synthetic peptide inhibits the inflammasome response as evidenced by decreased interleukin-1beta (IL-1β) production. Mutation of these cleavage sites in LANA leads to a significant increase in the inflammasome response indicated by increased IL-1β production compared to wild-type LANA. Taken in total, these results provide evidence that these cleavage sites in LANA participate both in delaying apoptosis and blunting aspects of the innate immune response. These studies provide new insights into the mechanisms by which KSHV obviates the cellular defense responses that are activated following virus infection.


Zdroje

1. Benedict CA, Norris PS, Ware CF (2002) To kill or be killed: viral evasion of apoptosis. Nat Immunol 3: 1013–1018. 12407409

2. Clem RJ (2001) Baculoviruses and apoptosis: the good, the bad, and the ugly. Cell Death Differ 8: 137–143. 11313715

3. Means RE, Choi JK, Nakamura H, Chung YH, Ishido S, et al. (2002) Immune evasion strategies of Kaposi's sarcoma-associated herpesvirus. Curr Top Microbiol Immunol 269: 187–201. 12224509

4. Moore PS (2007) KSHV manipulation of the cell cycle and apoptosis.

5. Richard A, Tulasne D (2012) Caspase cleavage of viral proteins, another way for viruses to make the best of apoptosis. Cell Death Dis 3: e277. doi: 10.1038/cddis.2012.18 22402601

6. Singh VV, Kerur N, Bottero V, Dutta S, Chakraborty S, et al. (2013) Kaposi's sarcoma-associated herpesvirus latency in endothelial and B cells activates gamma interferon-inducible protein 16-mediated inflammasomes. J Virol 87: 4417–4431. doi: 10.1128/JVI.03282-12 23388709

7. Gantt S, Casper C (2011) Human herpesvirus 8-associated neoplasms: the roles of viral replication and antiviral treatment. Curr Opin Infect Dis 24: 295–301. doi: 10.1097/QCO.0b013e3283486d04 21666458

8. Polizzotto MN, Uldrick TS, Hu D, Yarchoan R (2012) Clinical Manifestations of Kaposi Sarcoma Herpesvirus Lytic Activation: Multicentric Castleman Disease (KSHV-MCD) and the KSHV Inflammatory Cytokine Syndrome. Front Microbiol 3: 73. doi: 10.3389/fmicb.2012.00073 22403576

9. Belanger C, Gravel A, Tomoiu A, Janelle ME, Gosselin J, et al. (2001) Human herpesvirus 8 viral FLICE-inhibitory protein inhibits Fas-mediated apoptosis through binding and prevention of procaspase-8 maturation. J Hum Virol 4: 62–73. 11437316

10. Guasparri I, Keller SA, Cesarman E (2004) KSHV vFLIP is essential for the survival of infected lymphoma cells. J Exp Med 199: 993–1003. 15067035

11. Sun Q, Matta H, Chaudhary PM (2003) The human herpes virus 8-encoded viral FLICE inhibitory protein protects against growth factor withdrawal-induced apoptosis via NF-kappa B activation. Blood 101: 1956–1961. 12406869

12. Thurau M, Marquardt G, Gonin-Laurent N, Weinlander K, Naschberger E, et al. (2009) Viral inhibitor of apoptosis vFLIP/K13 protects endothelial cells against superoxide-induced cell death. J Virol 83: 598–611. doi: 10.1128/JVI.00629-08 18987137

13. Friborg J Jr., Kong W, Hottiger MO, Nabel GJ (1999) p53 inhibition by the LANA protein of KSHV protects against cell death. Nature 402: 889–894. 10622254

14. Suffert G, Malterer G, Hausser J, Viiliainen J, Fender A, et al. (2011) Kaposi's sarcoma herpesvirus microRNAs target caspase 3 and regulate apoptosis. PLoS Pathog 7: e1002405. doi: 10.1371/journal.ppat.1002405 22174674

15. Lagos D, Trotter MW, Vart RJ, Wang HW, Matthews NC, et al. (2007) Kaposi sarcoma herpesvirus-encoded vFLIP and vIRF1 regulate antigen presentation in lymphatic endothelial cells. Blood 109: 1550–1558. 17047149

16. Kwun HJ, da Silva SR, Qin H, Ferris RL, Tan R, et al. (2011) The central repeat domain 1 of Kaposi's sarcoma-associated herpesvirus (KSHV) latency associated-nuclear antigen 1 (LANA1) prevents cis MHC class I peptide presentation. Virology 412: 357–365. doi: 10.1016/j.virol.2011.01.026 21324504

17. Gregory SM, Davis BK, West JA, Taxman DJ, Matsuzawa S, et al. (2011) Discovery of a viral NLR homolog that inhibits the inflammasome. Science 331: 330–334. doi: 10.1126/science.1199478 21252346

18. Mathew SS, Bryant PW, Burch AD (2010) Accumulation of oxidized proteins in Herpesvirus infected cells. Free Radic Biol Med 49: 383–391. doi: 10.1016/j.freeradbiomed.2010.04.026 20441790

19. Kamranvar SA, Masucci MG The Epstein-Barr virus nuclear antigen-1 promotes telomere dysfunction via induction of oxidative stress. Leukemia 25: 1017–1025. doi: 10.1038/leu.2011.35 21394098

20. Kim JC, Choi SH, Kim JK, Kim Y, Kim HJ, et al. (2008) [Herpes simplex virus type 1 ICP27 induces apoptotic cell death by increasing intracellular reactive oxygen species]. Mol Biol (Mosk) 42: 470–477.

21. Lassoued S, Ben Ameur R, Ayadi W, Gargouri B, Ben Mansour R, et al. (2008) Epstein-Barr virus induces an oxidative stress during the early stages of infection in B lymphocytes, epithelial, and lymphoblastoid cell lines. Mol Cell Biochem 313: 179–186. doi: 10.1007/s11010-008-9755-z 18414998

22. Ma Q, Cavallin LE, Leung HJ, Chiozzini C, Goldschmidt-Clermont PJ, et al. (2012) A role for virally induced reactive oxygen species in Kaposi's sarcoma herpesvirus tumorigenesis. Antioxid Redox Signal 18: 80–90. doi: 10.1089/ars.2012.4584 22746102

23. Qin Z, Freitas E, Sullivan R, Mohan S, Bacelieri R, et al. Upregulation of xCT by KSHV-encoded microRNAs facilitates KSHV dissemination and persistence in an environment of oxidative stress. PLoS Pathog 6: e1000742. doi: 10.1371/journal.ppat.1000742 20126446

24. Li X, Feng J, Sun R (2010) Oxidative stress induces reactivation of Kaposi's sarcoma-associated herpesvirus and death of primary effusion lymphoma cells. J Virol 85: 715–724. doi: 10.1128/JVI.01742-10 21068240

25. Ye F, Zhou F, Bedolla RG, Jones T, Lei X, et al. (2011) Reactive oxygen species hydrogen peroxide mediates Kaposi's sarcoma-associated herpesvirus reactivation from latency. PLoS Pathog 7: e1002054. doi: 10.1371/journal.ppat.1002054 21625536

26. Ahn BY, Moss B (1992) Glutaredoxin homolog encoded by vaccinia virus is a virion-associated enzyme with thioltransferase and dehydroascorbate reductase activities. Proc Natl Acad Sci U S A 89: 7060–7064. 1496000

27. Toptan T, Fonseca L, Kwun HJ, Chang Y, Moore PS (2013) Complex alternative cytoplasmic protein isoforms of the Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen 1 generated through noncanonical translation initiation. J Virol 87: 2744–2755. doi: 10.1128/JVI.03061-12 23255808

28. Song J, Tan H, Shen H, Mahmood K, Boyd SE, et al. Cascleave: towards more accurate prediction of caspase substrate cleavage sites. Bioinformatics 26: 752–760. doi: 10.1093/bioinformatics/btq043 20130033

29. Brooks H, Lebleu B, Vives E (2005) Tat peptide-mediated cellular delivery: back to basics. Adv Drug Deliv Rev 57: 559–577. 15722164

30. Garnier P, Ying W, Swanson RA (2003) Ischemic preconditioning by caspase cleavage of poly(ADP-ribose) polymerase-1. J Neurosci 23: 7967–7973. 12954857

31. Benedettini E, Sholl LM, Peyton M, Reilly J, Ware C, et al. Met activation in non-small cell lung cancer is associated with de novo resistance to EGFR inhibitors and the development of brain metastasis. Am J Pathol 177: 415–423. doi: 10.2353/ajpath.2010.090863 20489150

32. Muruve DA, Petrilli V, Zaiss AK, White LR, Clark SA, et al. (2008) The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452: 103–107. doi: 10.1038/nature06664 18288107

33. Jacobs SR, Damania B (2012) NLRs, inflammasomes, and viral infection. J Leukoc Biol 92: 469–477. doi: 10.1189/jlb.0312132 22581934

34. McAuley JL, Tate MD, MacKenzie-Kludas CJ, Pinar A, Zeng W, et al. (2013) Activation of the NLRP3 inflammasome by IAV virulence protein PB1-F2 contributes to severe pathophysiology and disease. PLoS Pathog 9: e1003392. doi: 10.1371/journal.ppat.1003392 23737748

35. Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68: 383–424. 10872455

36. Cherezova L, Burnside KL, Rose TM (2011) Consrvation of Complex Nuclear Localization Signals Utilizing Classical and Non-classical Nuclear Import Pathways in LANA Homologs of KSHV and RFHV. PLoS One 6: e18920. doi: 10.1371/journal.pone.0018920 21559489

37. Schwam DR, Luciano RL, Mahajan SS, Wong L, Wilson AC (2000) Carboxy terminus of human herpesvirus 8 latency-associated nuclear antigen mediates dimerization, transcriptional repression, and targeting to nuclear bodies. J Virol 74: 8532–8540. 10954554

38. Campbell M, Chang PC, Huerta S, Izumiya C, Davis R, et al. (2012) Protein arginine methyltransferase 1-directed methylation of Kaposi sarcoma-associated herpesvirus latency-associated nuclear antigen. J Biol Chem 287: 5806–5818. doi: 10.1074/jbc.M111.289496 22179613

39. Woodard C, Shamay M, Liao G, Zhu J, Ng AN, et al. (2012) Phosphorylation of the chromatin binding domain of KSHV LANA. PLoS Pathog 8: e1002972. doi: 10.1371/journal.ppat.1002972 23093938

40. Bajaj BG, Verma SC, Lan K, Cotter MA, Woodman ZL, et al. (2006) KSHV encoded LANA upregulates Pim-1 and is a substrate for its kinase activity. Virology 351: 18–28. 16647097

41. Moore PS, Chang Y (2001) Molecular virology of Kaposi's sarcoma-associated herpesvirus. Philos Trans R Soc Lond B Biol Sci 356: 499–516. 11313008

42. Sarid R, Sato T, Bohenzky RA, Russo JJ, Chang Y (1997) Kaposi's sarcoma-associated herpesvirus encodes a functional bcl-2 homologue. Nat Med 3: 293–298. 9055856

43. Zoeteweij JP, Rinderknecht AS, Davis DA, Yarchoan R, Blauvelt A (2002) Minimal reactivation of Kaposi's sarcoma-associated herpesvirus by corticosteroids in latently infected B cell lines. J Med Virol 66: 378–383. 11793390

44. Wang L, Damania B (2008) Kaposi's sarcoma-associated herpesvirus confers a survival advantage to endothelial cells. Cancer Res 68: 4640–4648. doi: 10.1158/0008-5472.CAN-07-5988 18559509

45. Kanneganti TD (2010) Central roles of NLRs and inflammasomes in viral infection. Nat Rev Immunol 10: 688–698. doi: 10.1038/nri2851 20847744

46. Gram AM, Frenkel J, Ressing ME (2012) Inflammasomes and viruses: cellular defence versus viral offence. J Gen Virol 93: 2063–2075. doi: 10.1099/vir.0.042978-0 22739062

47. Kerur N, Veettil MV, Sharma-Walia N, Bottero V, Sadagopan S, et al. (2011) IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection. Cell Host Microbe 9: 363–375. doi: 10.1016/j.chom.2011.04.008 21575908

48. Gregory SM, Damania B (2011) Inhibition of the inflammasome response by a viral protein that interacts with NLRs. Commun Integr Biol 4: 416–418. doi: 10.4161/cib.4.4.15252 21966559

49. Ballestas ME, Kaye KM (2011) The latency-associated nuclear antigen, a multifunctional protein central to Kaposi's sarcoma-associated herpesvirus latency. Future Microbiol 6: 1399–1413. doi: 10.2217/fmb.11.137 22122438

50. Cai Q, Lan K, Verma SC, Si H, Lin D, et al. (2006) Kaposi's sarcoma-associated herpesvirus latent protein LANA interacts with HIF-1 alpha to upregulate RTA expression during hypoxia: Latency control under low oxygen conditions. J Virol 80: 7965–7975. 16873253

51. Prasad A, Lu M, Lukac DM, Zeichner SL (2012) An alternative Kaposi's sarcoma-associated herpesvirus replication program triggered by host cell apoptosis. J Virol 86: 4404–4419. doi: 10.1128/JVI.06617-11 22345480

52. Arvanitakis L, Mesri EA, Nador RG, Said JW, Asch AS, et al. (1996) Establishment and characterization of a primary effusion (body cavity- based) lymphoma cell line (BC-3) harboring kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) in the absence of Epstein-Barr virus. Blood 88: 2648–2654. 8839859

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#