#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Potent Cell-Intrinsic Immune Responses in Dendritic Cells Facilitate HIV-1-Specific T Cell Immunity in HIV-1 Elite Controllers


Elite controllers (EC), a small group of HIV-1-infected individuals that are able to control viral replication in the absence of antiretroviral therapy, provide living evidence that the human immune system is able to spontaneously control HIV-1 infection and serve as a model for inducing a functional cure of HIV-1 infection in broader patient populations. Prior studies indicated that T cell-mediated immune responses represent the backbone of effective antiviral immune defense in EC; however, emerging studies suggest that innate and cell-intrinsic immune activities may have critical roles for supporting and enhancing HIV-1-specific T cells. Here, we performed a detailed investigation of conventional dendritic cells (cDC) from elite controllers and their responses to HIV-1 infection. These studies indicate that cDC from EC have improved abilities to sense cytosolic HIV-1 replication products, and can more effectively mount cell-intrinsic type I interferon (IFN) secretion in response to HIV-1 infection. Notably, such increased production of type I IFN in response to viral antigen translated into enhanced abilities to prime and expand HIV-1-specific T cells. Together, these data suggest that a fine-tuned interplay between innate dendritic cell responses and adaptive HIV-1-specific CD8 T cells represents a critical component of antiviral immune defense in elite controllers.


Vyšlo v časopise: Potent Cell-Intrinsic Immune Responses in Dendritic Cells Facilitate HIV-1-Specific T Cell Immunity in HIV-1 Elite Controllers. PLoS Pathog 11(6): e32767. doi:10.1371/journal.ppat.1004930
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004930

Souhrn

Elite controllers (EC), a small group of HIV-1-infected individuals that are able to control viral replication in the absence of antiretroviral therapy, provide living evidence that the human immune system is able to spontaneously control HIV-1 infection and serve as a model for inducing a functional cure of HIV-1 infection in broader patient populations. Prior studies indicated that T cell-mediated immune responses represent the backbone of effective antiviral immune defense in EC; however, emerging studies suggest that innate and cell-intrinsic immune activities may have critical roles for supporting and enhancing HIV-1-specific T cells. Here, we performed a detailed investigation of conventional dendritic cells (cDC) from elite controllers and their responses to HIV-1 infection. These studies indicate that cDC from EC have improved abilities to sense cytosolic HIV-1 replication products, and can more effectively mount cell-intrinsic type I interferon (IFN) secretion in response to HIV-1 infection. Notably, such increased production of type I IFN in response to viral antigen translated into enhanced abilities to prime and expand HIV-1-specific T cells. Together, these data suggest that a fine-tuned interplay between innate dendritic cell responses and adaptive HIV-1-specific CD8 T cells represents a critical component of antiviral immune defense in elite controllers.


Zdroje

1. Blankson JN (2010) Effector mechanisms in HIV-1 infected elite controllers: highly active immune responses? Antiviral Res 85: 295–302. doi: 10.1016/j.antiviral.2009.08.007 19733595

2. Ferre AL, Hunt PW, Critchfield JW, Young DH, Morris MM, et al. (2009) Mucosal immune responses to HIV-1 in elite controllers: a potential correlate of immune control. Blood 113: 3978–3989. doi: 10.1182/blood-2008-10-182709 19109229

3. Hersperger AR, Martin JN, Shin LY, Sheth PM, Kovacs CM, et al. (2011) Increased HIV-specific CD8+ T-cell cytotoxic potential in HIV elite controllers is associated with T-bet expression. Blood 117: 3799–3808. doi: 10.1182/blood-2010-12-322727 21289310

4. Saez-Cirion A, Lacabaratz C, Lambotte O, Versmisse P, Urrutia A, et al. (2007) HIV controllers exhibit potent CD8 T cell capacity to suppress HIV infection ex vivo and peculiar cytotoxic T lymphocyte activation phenotype. Proc Natl Acad Sci U S A 104: 6776–6781. 17428922

5. Hugues S, Fetler L, Bonifaz L, Helft J, Amblard F, et al. (2004) Distinct T cell dynamics in lymph nodes during the induction of tolerance and immunity. Nat Immunol 5: 1235–1242. 15516925

6. Joffre O, Nolte MA, Sporri R, Reis e Sousa C (2009) Inflammatory signals in dendritic cell activation and the induction of adaptive immunity. Immunol Rev 227: 234–247. doi: 10.1111/j.1600-065X.2008.00718.x 19120488

7. Lindquist RL, Shakhar G, Dudziak D, Wardemann H, Eisenreich T, et al. (2004) Visualizing dendritic cell networks in vivo. Nat Immunol 5: 1243–1250. 15543150

8. Palucka K, Ueno H, Fay J, Banchereau J (2011) Dendritic cells and immunity against cancer. J Intern Med 269: 64–73. doi: 10.1111/j.1365-2796.2010.02317.x 21158979

9. Steinman RM, Idoyaga J (2010) Features of the dendritic cell lineage. Immunol Rev 234: 5–17. doi: 10.1111/j.0105-2896.2009.00888.x 20193008

10. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392: 245–252. 9521319

11. Akira S (2009) Innate immunity to pathogens: diversity in receptors for microbial recognition. Immunol Rev 227: 5–8. doi: 10.1111/j.1600-065X.2008.00739.x 19120470

12. Pichlmair A, Reis e Sousa C (2007) Innate recognition of viruses. Immunity 27: 370–383. 17892846

13. Longhi MP, Trumpfheller C, Idoyaga J, Caskey M, Matos I, et al. (2009) Dendritic cells require a systemic type I interferon response to mature and induce CD4+ Th1 immunity with poly IC as adjuvant. J Exp Med 206: 1589–1602. doi: 10.1084/jem.20090247 19564349

14. Goldfeld AE, Birch-Limberger K, Schooley RT, Walker BD (1991) HIV-1 infection does not induce tumor necrosis factor-alpha or interferon-beta gene transcription. J Acquir Immune Defic Syndr 4: 41–47. 1845771

15. Negre D, Mangeot PE, Duisit G, Blanchard S, Vidalain PO, et al. (2000) Characterization of novel safe lentiviral vectors derived from simian immunodeficiency virus (SIVmac251) that efficiently transduce mature human dendritic cells. Gene Ther 7: 1613–1623. 11083469

16. Manel N, Hogstad B, Wang Y, Levy DE, Unutmaz D, et al. (2010) A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature 467: 214–217. doi: 10.1038/nature09337 20829794

17. Manel N, Littman DR (2011) Hiding in plain sight: how HIV evades innate immune responses. Cell 147: 271–274. doi: 10.1016/j.cell.2011.09.010 22000008

18. Yan N, Regalado-Magdos AD, Stiggelbout B, Lee-Kirsch MA, Lieberman J (2010) The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat Immunol 11: 1005–1013. doi: 10.1038/ni.1941 20871604

19. Goldstone DC, Ennis-Adeniran V, Hedden JJ, Groom HC, Rice GI, et al. (2011) HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 480: 379–382. doi: 10.1038/nature10623 22056990

20. Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M, et al. (2011) Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474: 658–661. doi: 10.1038/nature10195 21720370

21. Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, et al. (2011) SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474: 654–657. doi: 10.1038/nature10117 21613998

22. Sunseri N, O'Brien M, Bhardwaj N, Landau NR (2011) Human immunodeficiency virus type 1 modified to package Simian immunodeficiency virus Vpx efficiently infects macrophages and dendritic cells. J Virol 85: 6263–6274. doi: 10.1128/JVI.00346-11 21507971

23. Ryoo J, Choi J, Oh C, Kim S, Seo M, et al. (2014) The ribonuclease activity of SAMHD1 is required for HIV-1 restriction. Nat Med 20: 936–941. doi: 10.1038/nm.3626 25038827

24. Bhat N, Fitzgerald KA (2014) Recognition of cytosolic DNA by cGAS and other STING-dependent sensors. Eur J Immunol 44: 634–640. doi: 10.1002/eji.201344127 24356864

25. Lam E, Stein S, Falck-Pedersen E (2014) Adenovirus detection by the cGAS/STING/TBK1 DNA sensing cascade. J Virol 88: 974–981. doi: 10.1128/JVI.02702-13 24198409

26. Jakobsen MR, Bak RO, Andersen A, Berg RK, Jensen SB, et al. (2013) IFI16 senses DNA forms of the lentiviral replication cycle and controls HIV-1 replication. Proc Natl Acad Sci U S A 110: E4571–4580. doi: 10.1073/pnas.1311669110 24154727

27. Lahaye X, Satoh T, Gentili M, Cerboni S, Conrad C, et al. (2013) The capsids of HIV-1 and HIV-2 determine immune detection of the viral cDNA by the innate sensor cGAS in dendritic cells. Immunity 39: 1132–1142. doi: 10.1016/j.immuni.2013.11.002 24269171

28. Laguette N, Benkirane M (2012) How SAMHD1 changes our view of viral restriction. Trends Immunol 33: 26–33. doi: 10.1016/j.it.2011.11.002 22177690

29. Stetson DB, Ko JS, Heidmann T, Medzhitov R (2008) Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134: 587–598. doi: 10.1016/j.cell.2008.06.032 18724932

30. Vigneault F, Woods M, Buzon MJ, Li C, Pereyra F, et al. (2011) Transcriptional profiling of CD4 T cells identifies distinct subgroups of HIV-1 elite controllers. J Virol 85: 3015–3019. doi: 10.1128/JVI.01846-10 21177805

31. Cameron PU, Handley AJ, Baylis DC, Solomon AE, Bernard N, et al. (2007) Preferential infection of dendritic cells during human immunodeficiency virus type 1 infection of blood leukocytes. J Virol 81: 2297–2306. 17166903

32. Granelli-Piperno A, Shimeliovich I, Pack M, Trumpfheller C, Steinman RM (2006) HIV-1 selectively infects a subset of nonmaturing BDCA1-positive dendritic cells in human blood. J Immunol 176: 991–998. 16393985

33. Smed-Sorensen A, Lore K, Vasudevan J, Louder MK, Andersson J, et al. (2005) Differential susceptibility to human immunodeficiency virus type 1 infection of myeloid and plasmacytoid dendritic cells. J Virol 79: 8861–8869. 15994779

34. Engelman A, Cherepanov P (2008) The lentiviral integrase binding protein LEDGF/p75 and HIV-1 replication. PLoS Pathog 4: e1000046. doi: 10.1371/journal.ppat.1000046 18369482

35. Levin A, Hayouka Z, Friedler A, Loyter A (2010) Transportin 3 and importin alpha are required for effective nuclear import of HIV-1 integrase in virus-infected cells. Nucleus 1: 422–431. doi: 10.4161/nucl.1.5.12903 21326825

36. Levin A, Rosenbluh J, Hayouka Z, Friedler A, Loyter A (2010) Integration of HIV-1 DNA is regulated by interplay between viral rev and cellular LEDGF/p75 proteins. Mol Med 16: 34–44. doi: 10.2119/molmed.2009.00133 19855849

37. Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, et al. (2008) Identification of host proteins required for HIV infection through a functional genomic screen. Science 319: 921–926. doi: 10.1126/science.1152725 18187620

38. Konig R, Zhou Y, Elleder D, Diamond TL, Bonamy GM, et al. (2008) Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell 135: 49–60. doi: 10.1016/j.cell.2008.07.032 18854154

39. Ciuffi A, Llano M, Poeschla E, Hoffmann C, Leipzig J, et al. (2005) A role for LEDGF/p75 in targeting HIV DNA integration. Nat Med 11: 1287–1289. 16311605

40. Llano M, Saenz DT, Meehan A, Wongthida P, Peretz M, et al. (2006) An essential role for LEDGF/p75 in HIV integration. Science 314: 461–464. 16959972

41. Diner EJ, Burdette DL, Wilson SC, Monroe KM, Kellenberger CA, et al. (2013) The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep 3: 1355–1361. doi: 10.1016/j.celrep.2013.05.009 23707065

42. Gao D, Wu J, Wu YT, Du F, Aroh C, et al. (2013) Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341: 903–906. doi: 10.1126/science.1240933 23929945

43. Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, et al. (2013) cGAS produces a 2'-5'-linked cyclic dinucleotide second messenger that activates STING. Nature 498: 380–384. doi: 10.1038/nature12306 23722158

44. Duan X, Ponomareva L, Veeranki S, Panchanathan R, Dickerson E, et al. (2011) Differential roles for the interferon-inducible IFI16 and AIM2 innate immune sensors for cytosolic DNA in cellular senescence of human fibroblasts. Mol Cancer Res 9: 589–602. doi: 10.1158/1541-7786.MCR-10-0565 21471287

45. Monroe KM, Yang Z, Johnson JR, Geng X, Doitsh G, et al. (2014) IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV. Science 343: 428–432. doi: 10.1126/science.1243640 24356113

46. Veeranki S, Choubey D (2012) Interferon-inducible p200-family protein IFI16, an innate immune sensor for cytosolic and nuclear double-stranded DNA: regulation of subcellular localization. Mol Immunol 49: 567–571. doi: 10.1016/j.molimm.2011.11.004 22137500

47. Joseph A, Zheng JH, Follenzi A, Dilorenzo T, Sango K, et al. (2008) Lentiviral vectors encoding human immunodeficiency virus type 1 (HIV-1)-specific T-cell receptor genes efficiently convert peripheral blood CD8 T lymphocytes into cytotoxic T lymphocytes with potent in vitro and in vivo HIV-1-specific inhibitory activity. J Virol 82: 3078–3089. doi: 10.1128/JVI.01812-07 18184707

48. Harman AN, Lai J, Turville S, Samarajiwa S, Gray L, et al. (2011) HIV infection of dendritic cells subverts the IFN induction pathway via IRF-1 and inhibits type 1 IFN production. Blood 118: 298–308. doi: 10.1182/blood-2010-07-297721 21411754

49. Rasaiyaah J, Tan CP, Fletcher AJ, Price AJ, Blondeau C, et al. (2013) HIV-1 evades innate immune recognition through specific cofactor recruitment. Nature 503: 402–405. doi: 10.1038/nature12769 24196705

50. Doehle BP, Chang K, Rustagi A, McNevin J, McElrath MJ, et al. (2012) Vpu mediates depletion of interferon regulatory factor 3 during HIV infection by a lysosome-dependent mechanism. J Virol 86: 8367–8374. doi: 10.1128/JVI.00423-12 22593165

51. Laguette N, Rahm N, Sobhian B, Chable-Bessia C, Munch J, et al. (2012) Evolutionary and functional analyses of the interaction between the myeloid restriction factor SAMHD1 and the lentiviral Vpx protein. Cell Host Microbe 11: 205–217. doi: 10.1016/j.chom.2012.01.007 22305291

52. Su B, Biedma ME, Lederle A, Peressin M, Lambotin M, et al. (2014) Dendritic cell-lymphocyte cross talk downregulates host restriction factor SAMHD1 and stimulates HIV-1 replication in dendritic cells. J Virol 88: 5109–5121. doi: 10.1128/JVI.03057-13 24574390

53. Holtz CM, Sadler HA, Mansky LM (2013) APOBEC3G cytosine deamination hotspots are defined by both sequence context and single-stranded DNA secondary structure. Nucleic Acids Res 41: 6139–6148. doi: 10.1093/nar/gkt246 23620282

54. Buzon MJ, Seiss K, Weiss R, Brass AL, Rosenberg ES, et al. (2011) Inhibition of HIV-1 integration in ex vivo-infected CD4 T cells from elite controllers. J Virol 85: 9646–9650. doi: 10.1128/JVI.05327-11 21734042

55. Ablasser A, Schmid-Burgk JL, Hemmerling I, Horvath GL, Schmidt T, et al. (2013) Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature 503: 530–534. doi: 10.1038/nature12640 24077100

56. Civril F, Deimling T, de Oliveira Mann CC, Ablasser A, Moldt M, et al. (2013) Structural mechanism of cytosolic DNA sensing by cGAS. Nature 498: 332–337. doi: 10.1038/nature12305 23722159

57. Gao P, Ascano M, Zillinger T, Wang W, Dai P, et al. (2013) Structure-function analysis of STING activation by c[G(2',5')pA(3',5')p] and targeting by antiviral DMXAA. Cell 154: 748–762. doi: 10.1016/j.cell.2013.07.023 23910378

58. Pereyra F, Addo MM, Kaufmann DE, Liu Y, Miura T, et al. (2008) Genetic and immunologic heterogeneity among persons who control HIV infection in the absence of therapy. J Infect Dis 197: 563–571. doi: 10.1086/526786 18275276

59. Carriere M, Lacabaratz C, Kok A, Benne C, Jenabian MA, et al. (2014) HIV "elite controllers" are characterized by a high frequency of memory CD8+ CD73+ T cells involved in the antigen-specific CD8+ T-cell response. J Infect Dis 209: 1321–1330. doi: 10.1093/infdis/jit643 24357632

60. Brennan CA, Ibarrondo FJ, Sugar CA, Hausner MA, Shih R, et al. (2012) Early HLA-B*57-restricted CD8+ T lymphocyte responses predict HIV-1 disease progression. J Virol 86: 10505–10516. doi: 10.1128/JVI.00102-12 22811521

61. Ndhlovu ZM, Chibnik LB, Proudfoot J, Vine S, McMullen A, et al. (2013) High-dimensional immunomonitoring models of HIV-1-specific CD8 T-cell responses accurately identify subjects achieving spontaneous viral control. Blood 121: 801–811. doi: 10.1182/blood-2012-06-436295 23233659

62. Huang J, Burke PS, Cung TD, Pereyra F, Toth I, et al. (2010) Leukocyte immunoglobulin-like receptors maintain unique antigen-presenting properties of circulating myeloid dendritic cells in HIV-1-infected elite controllers. J Virol 84: 9463–9471. doi: 10.1128/JVI.01009-10 20631139

63. Bello G, Velasco-de-Castro CA, Bongertz V, Rodrigues CA, Giacoia-Gripp CB, et al. (2009) Immune activation and antibody responses in non-progressing elite controller individuals infected with HIV-1. J Med Virol 81: 1681–1690. doi: 10.1002/jmv.21565 19697415

64. Pereyra F, Lo J, Triant VA, Wei J, Buzon MJ, et al. (2012) Increased coronary atherosclerosis and immune activation in HIV-1 elite controllers. AIDS 26: 2409–2412. doi: 10.1097/QAD.0b013e32835a9950 23032411

65. Chen H, Li C, Huang J, Cung T, Seiss K, et al. (2011) CD4+ T cells from elite controllers resist HIV-1 infection by selective upregulation of p21. J Clin Invest 121: 1549–1560. doi: 10.1172/JCI44539 21403397

66. Unutmaz D, KewalRamani VN, Marmon S, Littman DR (1999) Cytokine signals are sufficient for HIV-1 infection of resting human T lymphocytes. J Exp Med 189: 1735–1746. 10359577

67. Bashirova AA, Martin-Gayo E, Jones DC, Qi Y, Apps R, et al. (2014) LILRB2 interaction with HLA class I correlates with control of HIV-1 infection. PLoS Genet 10: e1004196. doi: 10.1371/journal.pgen.1004196 24603468

68. Buzon MJ, Sun H, Li C, Shaw A, Seiss K, et al. (2014) HIV-1 persistence in CD4 T cells with stem cell-like properties. Nat Med.

69. Brussel A, Sonigo P (2003) Analysis of early human immunodeficiency virus type 1 DNA synthesis by use of a new sensitive assay for quantifying integrated provirus. J Virol 77: 10119–10124. 12941923

70. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9: 559. doi: 10.1186/1471-2105-9-559 19114008

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#