#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

An Ultrasensitive Mechanism Regulates Influenza Virus-Induced Inflammation


Vaccines suffice for protecting public health against seasonal influenza viruses, but when unexpected strains appear against which the vaccine does not confer protection, alternative treatments are necessary. In this work, we used gene expression and virus growth data from influenza-infected mice to determine how moderate and deadly influenza viruses may invoke unique inflammatory responses and the role these responses play in disease pathology. We found that the relationship between virus growth and the inflammatory response for all viruses tested can be characterized by ultrasensitive response in which the inflammatory response is gated until a threshold concentration of virus is exceeded in the lung after which strong inflammatory gene expression and cytokine production occurs. This finding challenges the notion that deadly influenza viruses invoke unique cytokine and inflammatory responses and provides additional evidence that pathology is regulated by virus load, albeit in a highly nonlinear fashion. These findings suggests immunomodulatory treatments could focus on altering inflammatory response dynamics to improve disease pathology.


Vyšlo v časopise: An Ultrasensitive Mechanism Regulates Influenza Virus-Induced Inflammation. PLoS Pathog 11(6): e32767. doi:10.1371/journal.ppat.1004856
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004856

Souhrn

Vaccines suffice for protecting public health against seasonal influenza viruses, but when unexpected strains appear against which the vaccine does not confer protection, alternative treatments are necessary. In this work, we used gene expression and virus growth data from influenza-infected mice to determine how moderate and deadly influenza viruses may invoke unique inflammatory responses and the role these responses play in disease pathology. We found that the relationship between virus growth and the inflammatory response for all viruses tested can be characterized by ultrasensitive response in which the inflammatory response is gated until a threshold concentration of virus is exceeded in the lung after which strong inflammatory gene expression and cytokine production occurs. This finding challenges the notion that deadly influenza viruses invoke unique cytokine and inflammatory responses and provides additional evidence that pathology is regulated by virus load, albeit in a highly nonlinear fashion. These findings suggests immunomodulatory treatments could focus on altering inflammatory response dynamics to improve disease pathology.


Zdroje

1. Qian C, Cao X. Regulation of Toll-like receptor signaling pathways in innate immune responses. Ann N Y Acad Sci. 2013;1283: 67–74. doi: 10.1111/j.1749-6632.2012.06786.x 23163321

2. Loo Y-M, Gale M. Immune signaling by RIG-I-like receptors. Immunity. Elsevier Inc.; 2011;34: 680–92. doi: 10.1016/j.immuni.2011.05.003 21616437

3. Le Goffic R, Pothlichet J, Vitour D, Fujita T, Meurs E, Chignard M, et al. Cutting Edge: Influenza A Virus Activates TLR3-Dependent Inflammatory and RIG-I-Dependent Antiviral Responses in Human Lung Epithelial Cells. J Immunol. 2007;178: 3368–3372. http://www.jimmunol.org/cgi/content/abstract/178/6/3368 17339430

4. Lund JM, Alexopoulou L, Sato A, Karow M, Adams NC, Gale NW, et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci U S A. 2004;101: 5598–5603. 15034168

5. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 2006;441: 101–105. http://www.ncbi.nlm.nih.gov/pubmed/16625202 16625202

6. Pichlmair A, Schulz O, Tan CP, Näslund TI, Liljeström P, Weber F, et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5’-phosphates. Science. 2006;314: 997–1001. 17038589

7. Hornung V, Ellegast J, Kim S, Brzózka K, Jung A, Kato H, et al. 5’-Triphosphate RNA is the ligand for RIG-I. Science. 2006;314: 994–7. 17038590

8. Kobasa D, Jones SM, Shinya K, Kash JC, Copps J, Ebihara H, et al. Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature. 2007;445: 319–23. 17230189

9. Kash JC, Tumpey TM, Proll SC, Carter V, Perwitasari O, Thomas MJ, et al. Genomic analysis of increased host immune and cell death responses induced by 1918 influenza virus. Nature. 2006;443: 578–81. 17006449

10. Cilloniz C, Pantin-Jackwood MJ, Ni C, Goodman AG, Peng X, Proll SC, et al. Lethal dissemination of H5N1 influenza virus is associated with dysregulation of inflammation and lipoxin signaling in a mouse model of infection. J Virol. 2010;84: 7613–24. doi: 10.1128/JVI.00553-10 20504916

11. Neumann G, Chen H, Gao GF, Shu Y, Kawaoka Y. H5N1 influenza viruses: outbreaks and biological properties. Cell Res. Nature Publishing Group; 2010;20: 51–61. doi: 10.1038/cr.2009.124 19884910

12. De Jong MD, Simmons CP, Thanh TT, Hien VM, Smith GJD, Chau TNB, et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med. 2006;12: 1203–7. 16964257

13. Itoh Y, Shinya K, Kiso M, Watanabe T, Sakoda Y, Hatta M, et al. In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. Nature. Macmillan Publishers Limited. All rights reserved; 2009;460: 1021–5. doi: 10.1038/nature08260 19672242

14. Shoemaker JE, Fukuyama S, Eisfeld AJ, Muramoto Y, Watanabe S, Watanabe T, et al. Integrated network analysis reveals a novel role for the cell cycle in 2009 pandemic influenza virus-induced inflammation in macaque lungs. BMC Syst Biol. BMC Systems Biology; 2012;6: 117. doi: 10.1186/1752-0509-6-117 22937776

15. Boon ACM, Finkelstein D, Zheng M, Liao G, Allard J, Klumpp K, et al. H5N1 influenza virus pathogenesis in genetically diverse mice is mediated at the level of viral load. MBio. American Society for Microbiology; 2011;2.

16. Hatta Y, Hershberger K, Shinya K, Proll SC, Dubielzig RR, Hatta M, et al. Viral replication rate regulates clinical outcome and CD8 T cell responses during highly pathogenic H5N1 influenza virus infection in mice. PLoS Pathog. 2010;6: e1001139. doi: 10.1371/journal.ppat.1001139 20949022

17. Tchitchek N, Eisfeld AJ, Tisoncik-Go J, Josset L, Gralinski LE, Bécavin C, et al. Specific mutations in H5N1 mainly impact the magnitude and velocity of the host response in mice. BMC Syst Biol. 2013;7: 69. doi: 10.1186/1752-0509-7-69 23895213

18. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9: 559. doi: 10.1186/1471-2105-9-559 19114008

19. Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35: W169–75. 17576678

20. Kaimal V, Bardes EE, Tabar SC, Jegga AG, Aronow BJ. ToppCluster: a multiple gene list feature analyzer for comparative enrichment clustering and network-based dissection of biological systems. Nucleic Acids Res. 2010;38: W96–102. doi: 10.1093/nar/gkq418 20484371

21. Sun L, Liu S, Chen ZJ. SnapShot: pathways of antiviral innate immunity. Cell. 2010;140: 436–436.e2. doi: 10.1016/j.cell.2010.01.041 20144765

22. Menachery VD, Eisfeld AJ, Schäfer A, Josset L, Sims AC, Proll S, et al. Pathogenic Influenza Viruses and Coronaviruses Utilize Similar and Contrasting Approaches To Control Interferon-Stimulated Gene Responses. MBio. 2014;5: 1–11.

23. Shoemaker JE, Lopes TJS, Ghosh S, Matsuoka Y, Kawaoka Y, Kitano H. CTen: a web-based platform for identifying enriched cell types from heterogeneous microarray data. BMC Genomics. BMC Genomics; 2012;13: 460. doi: 10.1186/1471-2164-13-460 22953731

24. Cillóniz C, Shinya K, Peng X, Korth MJ, Proll SC, Aicher LD, et al. Lethal influenza virus infection in macaques is associated with early dysregulation of inflammatory related genes. PLoS Pathog. 2009;5: e1000604. doi: 10.1371/journal.ppat.1000604 19798428

25. Shinya K, Gao Y, Cilloniz C, Suzuki Y, Fujie M, Deng G, et al. Integrated clinical, pathologic, virologic, and transcriptomic analysis of H5N1 influenza virus-induced viral pneumonia in the rhesus macaque. J Virol. 2012;86: 6055–66. doi: 10.1128/JVI.00365-12 22491448

26. Lin KL, Suzuki Y, Nakano H, Ramsburg E, Gunn MD. CCR2+ monocyte-derived dendritic cells and exudate macrophages produce influenza-induced pulmonary immune pathology and mortality. J Immunol. 2008;180: 2562–72. http://www.ncbi.nlm.nih.gov/pubmed/18250467 18250467

27. Brandes M, Klauschen F, Kuchen S, Germain RN. A systems analysis identifies a feedforward inflammatory circuit leading to lethal influenza infection. Cell. 2013;154: 197–212. doi: 10.1016/j.cell.2013.06.013 23827683

28. Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S, et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature. Nature Publishing Group; 2011;474: 380–4. doi: 10.1038/nature10110 21614001

29. Kristiansen H, Scherer C a, McVean M, Iadonato SP, Vends S, Thavachelvam K, et al. Extracellular 2’-5' oligoadenylate synthetase stimulates RNase L-independent antiviral activity: a novel mechanism of virus-induced innate immunity. J Virol. 2010;84: 11898–904. doi: 10.1128/JVI.01003-10 20844035

30. Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell. Elsevier Inc.; 2011;44: 325–40. doi: 10.1016/j.molcel.2011.08.025 21906983

31. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, et al. The transcriptional landscape of the mammalian genome. Science. 2005;309: 1559–63. 16141072

32. Trunnell NB, Poon AC, Kim SY, Ferrell JE. Ultrasensitivity in the Regulation of Cdc25C by Cdk1. Mol Cell. Elsevier Inc.; 2011;41: 263–74. doi: 10.1016/j.molcel.2011.01.012 21292159

33. Bagci EZ, Vodovotz Y, Billiar TR, Ermentrout GB, Bahar I. Bistability in apoptosis: roles of bax, bcl-2, and mitochondrial permeability transition pores. Biophys J. 2006;90: 1546–59. 16339882

34. Goulev Y, Charvin G. Ultrasensitivity and positive feedback to promote sharp mitotic entry. Mol Cell. 2011;41: 243–4. doi: 10.1016/j.molcel.2011.01.016 21292155

35. Huang CY, Ferrell JE. Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc Natl Acad Sci U S A. 1996;93: 10078–83. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=38339&tool=pmcentrez&rendertype=abstract 8816754

36. Shoemaker JE, Doyle FJ. Identifying fragilities in biochemical networks: robust performance analysis of Fas signaling-induced apoptosis. Biophys J. Elsevier; 2008;95: 2610–23. doi: 10.1529/biophysj.107.123398 18539637

37. Qi L, Kash JC, Dugan VG, Jagger BW, Lau Y, Crouch EC, et al. The Ability of Pandemic Influenza Virus Hemagglutinins to Induce Lower Respiratory Pathology is Associated with Decreased Surfactant Protein D Binding. J Virol. 2012;412: 426–434.

38. García-Sastre a, Egorov a, Matassov D, Brandt S, Levy DE, Durbin JE, et al. Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology. 1998;252: 324–30. http://www.ncbi.nlm.nih.gov/pubmed/9878611 9878611

39. Pal S, Rosas JM, Rosas-Acosta G. Identification of the non-structural influenza A viral protein NS1A as a bona fide target of the Small Ubiquitin-like MOdifier by the use of dicistronic expression constructs. J Virol Methods. 2010;163: 498–504. doi: 10.1016/j.jviromet.2009.11.010 19917317

40. Xu K, Klenk C, Liu B, Keiner B, Cheng J, Zheng B-J, et al. Modification of nonstructural protein 1 of influenza A virus by SUMO1. J Virol. 2011;85: 1086–1098. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3020006&tool=pmcentrez&rendertype=abstract doi: 10.1128/JVI.00877-10 21047957

41. Santos A, Pal S, Chacón J, Meraz K, Gonzalez J, Prieto K, et al. SUMOylation affects the interferon blocking activity of the influenza A nonstructural protein NS1 without affecting its stability or cellular localization. J Virol. 2013;87: 5602–20. doi: 10.1128/JVI.02063-12 23468495

42. Seo S-U, Kwon H-J, Song J-H, Byun Y-H, Seong BL, Kawai T, et al. MyD88 signaling is indispensable for primary influenza A virus infection but dispensable for secondary infection. J Virol. 2010;84: 12713–22. doi: 10.1128/JVI.01675-10 20943980

43. Shinya K, Okamura T, Sueta S, Kasai N, Tanaka M, Ginting TE, et al. Toll-like receptor pre-stimulation protects mice against lethal infection with highly pathogenic influenza viruses. Virol J. BioMed Central Ltd; 2011;8: 97. doi: 10.1186/1743-422X-8-97 21375734

44. Smyth GK. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3.

45. Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009;37: W305–11. doi: 10.1093/nar/gkp427 19465376

46. Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-toh K, et al. Systematic discovery of regulatory motifs in human promoters and 3 UTRs by comparison of several mammals. Nature. 2005;434: 338–345. 15735639

47. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27: 1739–40. doi: 10.1093/bioinformatics/btr260 21546393

48. De Veer MJ, Holko M, Frevel M, Walker E, Der S, Paranjape JM, et al. Functional classification of interferon-stimulated genes identified using microarrays. J Leukoc Biol. 2001;69: 912–920. 11404376

49. Muggeo VMR. segmented: an R package to fit regression models with broken-line relationships. 2007;2.

50. Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biometrical J. 2008;50: 346–63. doi: 10.1002/bimj.200810425 18481363

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#