#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

An Model of Latency and Reactivation of Varicella Zoster Virus in Human Stem Cell-Derived Neurons


Most adults worldwide harbor latent VZV in their ganglia, and reactivation from it causes herpes zoster. This painful disease is frequently complicated by long-term pain, neurological sequelae, or vision loss that require improved prevention and treatment strategies. Study of VZV latency and reactivation has been severely hampered by the inability to reproduce a persistent state in vitro or in vivo that can be experimentally reactivated. Our study establishes a system using human neurons derived from embryonic stem cells where multiple stimuli can induce reactivation from long term experimental latency. A potential role for temperature in VZV reactivation has been revealed with this system, which can now be used to study the latent/lytic switch of VZV for the first time.


Vyšlo v časopise: An Model of Latency and Reactivation of Varicella Zoster Virus in Human Stem Cell-Derived Neurons. PLoS Pathog 11(6): e32767. doi:10.1371/journal.ppat.1004885
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004885

Souhrn

Most adults worldwide harbor latent VZV in their ganglia, and reactivation from it causes herpes zoster. This painful disease is frequently complicated by long-term pain, neurological sequelae, or vision loss that require improved prevention and treatment strategies. Study of VZV latency and reactivation has been severely hampered by the inability to reproduce a persistent state in vitro or in vivo that can be experimentally reactivated. Our study establishes a system using human neurons derived from embryonic stem cells where multiple stimuli can induce reactivation from long term experimental latency. A potential role for temperature in VZV reactivation has been revealed with this system, which can now be used to study the latent/lytic switch of VZV for the first time.


Zdroje

1. Kennedy PG, Cohrs RJ. Varicella-zoster virus human ganglionic latency: a current summary. J Neurovirol. 2010;16: 411–418. doi: 10.3109/13550284.2010.515652 20874010

2. Ouwendijk WJD, Choe A, Nagel MA, Gilden D, Osterhaus ADME, Cohrs RJ, et al. Restricted varicella-zoster virus transcription in human trigeminal ganglia obtained soon after death. J Virol. 2012;86: 10203–10206. doi: 10.1128/JVI.01331-12 22740396

3. Cohrs RJ, Gilden DH, Kinchington PR, Grinfeld E, Kennedy PGE. Varicella-zoster virus gene 66 transcription and translation in latently infected human Ganglia. J Virol. 2003;77: 6660–6665. 12767985

4. Lungu O, Panagiotidis CA, Annunziato PW, Gershon AA, Silverstein SJ. Aberrant intracellular localization of Varicella-Zoster virus regulatory proteins during latency. Proc Natl Acad Sci U S A. 1998;95: 7080–7085. 9618542

5. Zerboni L, Sobel RA, Lai M, Triglia R, Steain M, Abendroth A, et al. Apparent expression of varicella-zoster virus proteins in latency resulting from reactivity of murine and rabbit antibodies with human blood group A determinants in sensory neurons. J Virol. 2012;86: 576–83.

6. Baird NL, Bowlin JL, Cohrs RJ, Gilden D, Jones KL. Comparison of VZV RNA sequences in human neurons and fibroblasts. J Virol. 2014.

7. Cohrs RJ, Gilden DH. Prevalence and abundance of latently transcribed varicella-zoster virus genes in human ganglia. J Virol. 2007;81: 2950–2956. 17192313

8. Debrus S, Sadzot-Delvaux C, Nikkels AF, Piette J, Rentier B. Varicella-zoster virus gene 63 encodes an immediate-early protein that is abundantly expressed during latency. J Virol. 1995;69: 3240–3245. 7707559

9. Hood C, Cunningham AL, Slobedman B, Arvin AM, Sommer MH, Kinchington PR, et al. Varicella-zoster virus ORF63 inhibits apoptosis of primary human neurons. J Virol. 2006;80: 1025–1031. 16379003

10. Ambagala AP, Bosma T, Ali MA, Poustovoitov M, Chen JJ, Gershon MD, et al. Varicella-zoster virus immediate-early 63 protein interacts with human antisilencing function 1 protein and alters its ability to bind histones h3.1 and h3.3. J Virol. 2009;83: 200–209. doi: 10.1128/JVI.00645-08 18971269

11. Chen JJ, Gershon AA, Li ZS, Lungu O, Gershon MD. Latent and lytic infection of isolated guinea pig enteric ganglia by varicella zoster virus. J Med Virol. 2003;70: S71–S78. 12627492

12. Gan L, Wang M, Chen JJ, Gershon MD, Gershon AA. Infected peripheral blood mononuclear cells transmit latent varicella zoster virus infection to the guinea pig enteric nervous system. J Neurovirol. 2014;20: 442–456. doi: 10.1007/s13365-014-0259-1 24965252

13. Zerboni L, Reichelt M, Arvin A. Varicella-zoster virus neurotropism in SCID mouse-human dorsal root ganglia xenografts. Curr Top Microbiol Immunol. 2010;342: 255–276. doi: 10.1007/82_2009_8 20225014

14. Zerboni L, Sen N, Oliver SL, Arvin AM. Molecular mechanisms of varicella zoster virus pathogenesis. Nat Rev Microbiol. 2014;12: 197–210. doi: 10.1038/nrmicro3215 24509782

15. Christensen J, Steain M, Slobedman B, Abendroth A. Differentiated neuroblastoma cells provide a highly efficient model for studies of productive varicella-zoster virus infection of neuronal cells. J Virol. 2011;85: 8436–42. doi: 10.1128/JVI.00515-11 21632750

16. Markus A, Grigoryan S, Sloutskin A, Yee MB, Zhu H, Yang IH, et al. Varicella-zoster virus (VZV) infection of neurons derived from human embryonic stem cells: direct demonstration of axonal infection, transport of VZV, and productive neuronal infection. J Virol. 2011;85: 6220–6233. doi: 10.1128/JVI.02396-10 21525353

17. Lee KS, Zhou W, Scott-McKean JJ, Emmerling KL, Cai G-Y, Krah DL, et al. Human sensory neurons derived from induced pluripotent stem cells support varicella-zoster virus infection. PloS One. 2012;7: e53010. doi: 10.1371/journal.pone.0053010 23285249

18. Pugazhenthi S, Nair S, Velmurugan K, Liang Q, Mahalingam R, Cohrs RJ, et al. Varicella-zoster virus infection of differentiated human neural stem cells. J Virol. 2011;85: 6678–6686. doi: 10.1128/JVI.00445-11 21525352

19. Goodwin TJ, McCarthy M, Osterrieder N, Cohrs RJ, Kaufer BB. Three-dimensional normal human neural progenitor tissue-like assemblies: a model of persistent varicella-zoster virus infection. PLoS Pathog. 2013;9: e1003512. doi: 10.1371/journal.ppat.1003512 23935496

20. Baird NL, Bowlin JL, Yu X, Jonjić S, Haas J, Cohrs RJ, et al. Varicella zoster virus DNA does not accumulate in infected human neurons. Virology. 2014;458–459: 1–3. doi: 10.1016/j.virol.2014.03.021 24928051

21. Sloutskin A, Kinchington PR, Goldstein RS. Productive vs non-productive infection by cell-free varicella zoster virus of human neurons derived from embryonic stem cells is dependent upon infectious viral dose. Virology. 2013;443: 285–293. doi: 10.1016/j.virol.2013.05.021 23769240

22. Eisfeld AJ, Yee MB, Erazo A, Abendroth A, Kinchington PR. Downregulation of class I major histocompatibility complex surface expression by varicella-zoster virus involves open reading frame 66 protein kinase-dependent and-independent mechanisms. J Virol. 2007;81: 9034–9049. 17567702

23. Catez F, Picard C, Held K, Gross S, Rousseau A, Theil D, et al. HSV-1 genome subnuclear positioning and associations with host-cell PML-NBs and centromeres regulate LAT locus transcription during latency in neurons. PLoS Pathog. 2012;8: e1002852. doi: 10.1371/journal.ppat.1002852 22912575

24. Kim JY, Shiflett LA, Linderman JA, Mohr I, Wilson AC. Using homogeneous primary neuron cultures to study fundamental aspects of HSV-1 latency and reactivation. Methods Mol Biol Clifton NJ. 2014;1144: 167–179. doi: 10.1007/978-1-4939-0428-0_11 24671683

25. Wilcox CL, Smith RL, Freed CR, Johnson EM. Nerve growth factor-dependence of herpes simplex virus latency in peripheral sympathetic and sensory neurons in vitro. J Neurosci Off J Soc Neurosci. 1990;10: 1268–1275.

26. Du T, Zhou G, Roizman B. HSV-1 gene expression from reactivated ganglia is disordered and concurrent with suppression of latency-associated transcript and miRNAs. Proc Natl Acad Sci U S A. 2011;108: 18820–18824. doi: 10.1073/pnas.1117203108 22065742

27. Du T, Han Z, Zhou G, Roizman B. Patterns of accumulation of miRNAs encoded by herpes simplex virus during productive infection, latency, and on reactivation. Proc Natl Acad Sci U S A. 2015;112: E49–55. doi: 10.1073/pnas.1422657112 25535379

28. Penkert RR, Kalejta RF. Tegument protein control of latent herpesvirus establishment and animation. Herpesviridae. 2011;2:3. doi: 10.1186/2042-4280-2-3 21429246

29. Camarena V, Kobayashi M, Kim JY, Roehm P, Perez R, Gardner J, et al. Nature and duration of growth factor signaling through receptor tyrosine kinases regulates HSV-1 latency in neurons. Cell Host Microbe. 2010;8: 320–330. doi: 10.1016/j.chom.2010.09.007 20951966

30. Gomi Y, Sunamachi H, Mori Y, Nagaike K, Takahashi M, Yamanishi K. Comparison of the complete DNA sequences of the Oka varicella vaccine and its parental virus. J Virol. 2002;76: 11447–11459. 12388706

31. Cox E, Reddy S, Iofin I, Cohen JI. Varicella-Zoster Virus ORF57, Unlike Its Pseudorabies Virus UL3.5 Homolog, Is Dispensable for Viral Replication in Cell Culture. Virology. 1998;250: 205–209. 9770434

32. Ouwendijk WJD, Mahalingam R, de Swart RL, Haagmans BL, van Amerongen G, Getu S, et al. T-Cell Tropism of Simian Varicella Virus during Primary Infection. PLoS Pathog. 2013;9: e1003368. doi: 10.1371/journal.ppat.1003368 23675304

33. Ku C-C, Zerboni L, Ito H, Graham BS, Wallace M, Arvin AM. Varicella-zoster virus transfer to skin by T Cells and modulation of viral replication by epidermal cell interferon-alpha. J Exp Med. 2004;200: 917–925. 15452178

34. Hafezi W, Lorentzen EU, Eing BR, Müller M, King NJC, Klupp B, et al. Entry of Herpes Simplex Virus Type 1 (HSV-1) into the Distal Axons of Trigeminal Neurons Favors the Onset of Nonproductive, Silent Infection. PLoS Pathog. 2012;8: e1002679. doi: 10.1371/journal.ppat.1002679 22589716

35. Kinchington PR, Leger AJS, Guedon J-MG, Hendricks RL. Herpes simplex virus and varicella zoster virus, the house guests who never leave. Herpesviridae. 2012;3. doi: 10.1186/2042-4280-3-6 23062757

36. Wilson AC, Mohr I. A cultured affair: HSV latency and reactivation in neurons. Trends Microbiol. 2012;20: 604–611. doi: 10.1016/j.tim.2012.08.005 22963857

37. Wroblewska Z, Valyi-Nagy T, Otte J, Dillner A, Jackson A, Sole DP, et al. A mouse model for varicella-zoster virus latency. Microb Pathog. 1993;15: 141–151. 8255207

38. Sato H, Pesnicak L, Cohen JI. Use of a rodent model to show that varicella-zoster virus ORF61 is dispensable for establishment of latency. J Med Virol. 2003;70 Suppl 1: S79–81. 12627493

39. Gershon AA, Chen J, Gershon MD. A model of lytic, latent, and reactivating varicella-zoster virus infections in isolated enteric neurons. J Infect Dis. 2008;197 Suppl 2: S61–65. doi: 10.1086/522149 18419411

40. Zerboni L, Arvin A. Investigation of varicella-zoster virus neurotropism and neurovirulence using SCID mouse-human DRG xenografts. J Neurovirol. 2011;17: 570–577. doi: 10.1007/s13365-011-0066-x 22161683

41. Wilcox CL, Johnson EM. Nerve growth factor deprivation results in the reactivation of latent herpes simplex virus in vitro. J Virol. 1987;61: 2311–2315. 3035230

42. Grigoryan S, Kinchington PR, Yang IH, Selariu A, Zhu H, Yee M, et al. Retrograde axonal transport of VZV: kinetic studies in hESC-derived neurons. J Neurovirol. 2012;18: 462–470. doi: 10.1007/s13365-012-0124-z 22918852

43. Selariu A, Cheng T, Tang Q, Silver B, Yang L, Liu C, et al. ORF7 of Varicella Zoster Virus is a Neurotropic Factor. J Virol. 2012;86: 8614–24. doi: 10.1128/JVI.00128-12 22674980

44. Reichelt M, Zerboni L, Arvin AM. Mechanisms of varicella-zoster virus neuropathogenesis in human dorsal root ganglia. J Virol. 2008;82: 3971–3983. doi: 10.1128/JVI.02592-07 18256143

45. Bertke AS, Swanson SM, Chen J, Imai Y, Kinchington PR, Margolis TP. A5-positive primary sensory neurons are nonpermissive for productive infection with herpes simplex virus 1 in vitro. J Virol. 2011;85: 6669–6677. doi: 10.1128/JVI.00204-11 21507969

46. Nicoll MP, Proença JT, Efstathiou S. The molecular basis of herpes simplex virus latency. FEMS Microbiol Rev. 2012;36: 684–705. doi: 10.1111/j.1574-6976.2011.00320.x 22150699

47. Grose C, Brunel PA. Varicella-zoster virus: isolation and propagation in human melanoma cells at 36 and 32 degrees C. Infect Immun. 1978;19: 199–203. 203532

48. Kinchington PR, Bookey D, Turse SE. The transcriptional regulatory proteins encoded by varicella-zoster virus open reading frames (ORFs) 4 and 63, but not ORF 61, are associated with purified virus particles. J Virol. 1995;69: 4274–4282. 7769688

49. Prasad A, Remick J, Zeichner SL. Activation of human herpesvirus replication by apoptosis. J Virol. 2013;87: 10641–10650. doi: 10.1128/JVI.01178-13 23885073

50. Peng W, Vitvitskaia O, Carpenter D, Wechsler SL, Jones C. Identification of two small RNAs within the first 1.5-kb of the herpes simplex virus type 1-encoded latency-associated transcript. J Neurovirol. 2008;14: 41–52. doi: 10.1080/13550280701793957 18300074

51. Umbach JL, Kramer MF, Jurak I, Karnowski HW, Coen DM, Cullen BR. MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature. 2008;454: 780–783. doi: 10.1038/nature07103 18596690

52. Umbach JL, Nagel MA, Cohrs RJ, Gilden DH, Cullen BR. Analysis of human alphaherpesvirus microRNA expression in latently infected human trigeminal ganglia. J Virol. 2009;83: 10677–10683. doi: 10.1128/JVI.01185-09 19656888

53. Szpara ML, Kobiler O, Enquist LW. A common neuronal response to alphaherpesvirus infection. J Neuroimmune Pharmacol Off J Soc NeuroImmune Pharmacol. 2010;5: 418–427.

54. Jones M, Dry IR, Frampton D, Singh M, Kanda RK, Yee MB, et al. RNA-seq Analysis of Host and Viral Gene Expression Highlights Interaction between Varicella Zoster Virus and Keratinocyte Differentiation. PLoS Pathog. 2014;10: e1003896. doi: 10.1371/journal.ppat.1003896 24497829

55. Harkness JM, Kader M, DeLuca NA. Transcription of the herpes simplex virus 1 genome during productive and quiescent infection of neuronal and nonneuronal cells. J Virol. 2014;88: 6847–6861. doi: 10.1128/JVI.00516-14 24719411

56. Sloutskin A, Goldstein RS. Laboratory preparation of Varicella-Zoster Virus: Concentration of virus-containing supernatant, use of a debris fraction and magnetofection for consistent cell-free VZV infections. J Virol Methods. 2014;206:128–132. doi: 10.1016/j.jviromet.2014.05.027 24925132

57. Taylor AM, Blurton-Jones M, Rhee SW, Cribbs DH, Cotman CW, Jeon NL. A microfluidic culture platform for CNS axonal injury, regeneration and transport. NatMethods. 2005;2: 599–605. 16094385

58. Watson S, Mercier S, Bye C, Wilkinson J, Cunningham AL, Harman AN. Determination of suitable housekeeping genes for normalisation of quantitative real time PCR analysis of cells infected with human immunodeficiency virus and herpes viruses. Virol J. 2007;4: 130. 18053162

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#