#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Human Immunodeficiency Virus Type 1 Nef Inhibits Autophagy through Transcription Factor EB Sequestration


Under basal conditions, the mammalian target of rapamycin (MTOR) phosphorylates transcription factor EB (TFEB) resulting in its cytoplasmic retention. When MTOR is inhibited, TFEB is dephosphorylated and translocated to the nucleus where it increases autophagy and lysosomal gene expression. As human immunodeficiency virus type 1 (HIV) Nef acts as an anti-autophagic maturation factor through interaction with beclin-1 (BECN1), we investigated the role of Nef and TFEB in the modulation of autophagy during HIV infection of human macrophages. We found that upon exposure to HIV, macrophages elicited an autophagic response through a toll-like receptor 8 (TLR8) and BECN1 dependent dephosphorylation and nuclear translocation of TFEB. However, once HIV infection is established, phosphorylation and cytoplasmic sequestration of TFEB as well as autophagy revert to pre-infection levels. Moreover, this reversion is dependent upon the presence of HIV Nef. Collectively, the data suggests that the interaction between HIV and TLR8 serves as a signal for autophagy induction that is dependent upon the dephosphorylation and nuclear translocation of TFEB. Once HIV establishes a productive infection, Nef binds BECN1 resulting in MTOR activation, TFEB phosphorylation and cytosolic sequestration and the inhibition of autophagy.


Vyšlo v časopise: Human Immunodeficiency Virus Type 1 Nef Inhibits Autophagy through Transcription Factor EB Sequestration. PLoS Pathog 11(6): e32767. doi:10.1371/journal.ppat.1005018
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1005018

Souhrn

Under basal conditions, the mammalian target of rapamycin (MTOR) phosphorylates transcription factor EB (TFEB) resulting in its cytoplasmic retention. When MTOR is inhibited, TFEB is dephosphorylated and translocated to the nucleus where it increases autophagy and lysosomal gene expression. As human immunodeficiency virus type 1 (HIV) Nef acts as an anti-autophagic maturation factor through interaction with beclin-1 (BECN1), we investigated the role of Nef and TFEB in the modulation of autophagy during HIV infection of human macrophages. We found that upon exposure to HIV, macrophages elicited an autophagic response through a toll-like receptor 8 (TLR8) and BECN1 dependent dephosphorylation and nuclear translocation of TFEB. However, once HIV infection is established, phosphorylation and cytoplasmic sequestration of TFEB as well as autophagy revert to pre-infection levels. Moreover, this reversion is dependent upon the presence of HIV Nef. Collectively, the data suggests that the interaction between HIV and TLR8 serves as a signal for autophagy induction that is dependent upon the dephosphorylation and nuclear translocation of TFEB. Once HIV establishes a productive infection, Nef binds BECN1 resulting in MTOR activation, TFEB phosphorylation and cytosolic sequestration and the inhibition of autophagy.


Zdroje

1. Campbell GR, Spector SA. Inhibition of human immunodeficiency virus type-1 through autophagy. Curr Opin Microbiol. 2013;16(3):349–54. Epub 2013/06/12. S1369-5274(13)00073-8 [pii] doi: 10.1016/j.mib.2013.05.006 23747172; PubMed Central PMCID: PMC3742638.

2. Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, et al. TFEB links autophagy to lysosomal biogenesis. Science. 2011;332(6036):1429–33. Epub 2011/05/28. science.1204592 [pii] doi: 10.1126/science.1204592 21617040; PubMed Central PMCID: PMC3638014.

3. Roczniak-Ferguson A, Petit CS, Froehlich F, Qian S, Ky J, Angarola B, et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal. 2012;5(228):ra42. Epub 2012/06/14. 5/228/ra42 [pii] doi: 10.1126/scisignal.2002790 22692423; PubMed Central PMCID: PMC3437338.

4. Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S, Erdin S, et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 2012;31(5):1095–108. doi: 10.1038/emboj.2012.32 22343943; PubMed Central PMCID: PMC3298007.

5. Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, et al. A gene network regulating lysosomal biogenesis and function. Science. 2009;325(5939):473–7. Epub 2009/06/27. 1174447 [pii] doi: 10.1126/science.1174447 19556463.

6. Kyei GB, Dinkins C, Davis AS, Roberts E, Singh SB, Dong C, et al. Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J Cell Biol. 2009;186(2):255–68. Epub 2009/07/29. jcb.200903070 [pii] doi: 10.1083/jcb.200903070 19635843; PubMed Central PMCID: PMC2717652.

7. Shoji-Kawata S, Sumpter R, Leveno M, Campbell GR, Zou Z, Kinch L, et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature. 2013;494(7436):201–6. doi: 10.1038/nature11866 23364696; PubMed Central PMCID: PMC3788641.

8. Eberle HB, Serrano RL, Fullekrug J, Schlosser A, Lehmann WD, Lottspeich F, et al. Identification and characterization of a novel human plant pathogenesis-related protein that localizes to lipid-enriched microdomains in the Golgi complex. J Cell Sci. 2002;115(Pt 4):827–38. Epub 2002/02/28. 11865038. 11865038

9. Campbell GR, Spector SA. Hormonally active vitamin D3 (1α,25-dihydroxycholecalciferol) triggers autophagy in human macrophages that inhibits HIV-1 infection. J Biol Chem. 2011;286(21):18890–902. Epub 2011/03/30. doi: 10.1074/jbc.M110.206110 21454634

10. Campbell GR, Spector SA. Vitamin D inhibits human immunodeficiency virus type 1 and Mycobacterium tuberculosis infection in macrophages through the induction of autophagy. PLoS Pathog. 2012;8(5):e1002689. Epub 2012/05/17. doi: 10.1371/journal.ppat.1002689 PPATHOGENS-D-11-02322 [pii]. 22589721.

11. Zhou D, Spector SA. Human immunodeficiency virus type-1 infection inhibits autophagy. AIDS. 2008;22(6):695–9. Epub 2008/03/22. doi: 10.1097/QAD.0b013e3282f4a836 00002030-200803300-00003 [pii]. 18356598; PubMed Central PMCID: PMC2764485.

12. Campbell GR, Bruckman RS, Chu YL, Spector SA. Autophagy Induction by Histone Deacetylase Inhibitors Inhibits HIV Type 1. J Biol Chem. 2015;290(8):5028–40. doi: 10.1074/jbc.M114.605428 25540204; PubMed Central PMCID: PMC4335239.

13. Campbell GR, Spector SA. Toll-like receptor 8 ligands activate a vitamin D mediated autophagic response that inhibits human immunodeficiency virus type 1. PLoS Pathog. 2012;8(11):e1003017. Epub 2012/11/15. doi: 10.1371/journal.ppat.1003017 23166493; PubMed Central PMCID: PMC3499571.

14. Espert L, Varbanov M, Robert-Hebmann V, Sagnier S, Robbins I, Sanchez F, et al. Differential role of autophagy in CD4 T cells and macrophages during X4 and R5 HIV-1 infection. PLoS One. 2009;4(6):e5787. Epub 2009/06/06. doi: 10.1371/journal.pone.0005787 19492063; PubMed Central PMCID: PMC2686268.

15. Dettenhofer M, Yu XF. Highly purified human immunodeficiency virus type 1 reveals a virtual absence of Vif in virions. J Virol. 1999;73(2):1460–7. 9882352; PubMed Central PMCID: PMC103971.

16. Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012;8(4):445–544. Epub 2012/09/12. 22966490; PubMed Central PMCID: PMC3404883.

17. Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol. 2005;171(4):603–14. Epub 2005/11/16. jcb.200507002 [pii] doi: 10.1083/jcb.200507002 16286508; PubMed Central PMCID: PMC2171557.

18. Denizot M, Varbanov M, Espert L, Robert-Hebmann V, Sagnier S, Garcia E, et al. HIV-1 gp41 fusogenic function triggers autophagy in uninfected cells. Autophagy. 2008;4(8):998–1008. Epub 2008/09/27. 6880 [pii]. 18818518.

19. Espert L, Denizot M, Grimaldi M, Robert-Hebmann V, Gay B, Varbanov M, et al. Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. J Clin Invest. 2006;116(8):2161–72. Epub 2006/08/04. doi: 10.1172/JCI26185 16886061; PubMed Central PMCID: PMC1523410.

20. Marechal V, Prevost MC, Petit C, Perret E, Heard JM, Schwartz O. Human immunodeficiency virus type 1 entry into macrophages mediated by macropinocytosis. J Virol. 2001;75(22):11166–77. Epub 2001/10/17. doi: 10.1128/JVI.75.22.11166-11177.2001 11602756; PubMed Central PMCID: PMC114696.

21. Carter GC, Bernstone L, Baskaran D, James W. HIV-1 infects macrophages by exploiting an endocytic route dependent on dynamin, Rac1 and Pak1. Virology. 2011;409(2):234–50. doi: 10.1016/j.virol.2010.10.018 21056892.

22. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science. 2004;303(5663):1526–9. Epub 2004/02/21. doi: 10.1126/science.1093620 1093620 [pii]. 14976262.

23. Meier A, Alter G, Frahm N, Sidhu H, Li B, Bagchi A, et al. MyD88-dependent immune activation mediated by human immunodeficiency virus type 1-encoded Toll-like receptor ligands. J Virol. 2007;81(15):8180–91. Epub 2007/05/18. JVI.00421-07 [pii] doi: 10.1128/JVI.00421-07 17507480; PubMed Central PMCID: PMC1951290.

24. Sanjuan MA, Dillon CP, Tait SW, Moshiach S, Dorsey F, Connell S, et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature. 2007;450(7173):1253–7. doi: 10.1038/nature06421 18097414.

25. Henault J, Martinez J, Riggs JM, Tian J, Mehta P, Clarke L, et al. Noncanonical autophagy is required for type I interferon secretion in response to DNA-immune complexes. Immunity. 2012;37(6):986–97. doi: 10.1016/j.immuni.2012.09.014 23219390; PubMed Central PMCID: PMC3786711.

26. Ahmad-Nejad P, Hacker H, Rutz M, Bauer S, Vabulas RM, Wagner H. Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur J Immunol. 2002;32(7):1958–68. doi: 10.1002/1521-4141(200207)32:7<1958::AID-IMMU1958>3.0.CO;2-U 12115616.

27. Heil F, Ahmad-Nejad P, Hemmi H, Hochrein H, Ampenberger F, Gellert T, et al. The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. Eur J Immunol. 2003;33(11):2987–97. Epub 2003/10/28. doi: 10.1002/eji.200324238 14579267.

28. Matsumoto M, Funami K, Tanabe M, Oshiumi H, Shingai M, Seto Y, et al. Subcellular localization of Toll-like receptor 3 in human dendritic cells. J Immunol. 2003;171(6):3154–62. Epub 2003/09/10. 12960343.

29. Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting. Autophagy. 2007;3(6):542–5. Epub 2007/07/06. 4600 [pii]. 17611390.

30. Eng KE, Panas MD, Karlsson Hedestam GB, McInerney GM. A novel quantitative flow cytometry-based assay for autophagy. Autophagy. 2010;6(5):634–41. Epub 2010/05/12. 12112 [pii]. 20458170. doi: 10.4161/auto.6.5.12112

31. Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, et al. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol. 2001;152(4):657–68. Epub 2001/03/27. 11266458; PubMed Central PMCID: PMC2195787.

32. Delgado MA, Elmaoued RA, Davis AS, Kyei G, Deretic V. Toll-like receptors control autophagy. EMBO J. 2008;27(7):1110–21. Epub 2008/03/14. emboj200831 [pii] doi: 10.1038/emboj.2008.31 18337753; PubMed Central PMCID: PMC2323261.

33. Shi CS, Kehrl JH. TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy. Sci Signal. 2010;3(123):ra42. Epub 2010/05/27. 3/123/ra42 [pii] doi: 10.1126/scisignal.2000751 20501938.

34. Richards AL, Jackson WT. How positive-strand RNA viruses benefit from autophagosome maturation. J Virol. 2013;87(18):9966–72. doi: 10.1128/JVI.00460-13 23760248; PubMed Central PMCID: PMC3754026.

35. Nakamoto M, Moy RH, Xu J, Bambina S, Yasunaga A, Shelly SS, et al. Virus recognition by Toll-7 activates antiviral autophagy in Drosophila. Immunity. 2012;36(4):658–67. doi: 10.1016/j.immuni.2012.03.003 22464169; PubMed Central PMCID: PMC3334418.

36. Richetta C, Gregoire IP, Verlhac P, Azocar O, Baguet J, Flacher M, et al. Sustained autophagy contributes to measles virus infectivity. PLoS Pathog. 2013;9(9):e1003599. doi: 10.1371/journal.ppat.1003599 24086130; PubMed Central PMCID: PMC3784470.

37. Shi CS, Kehrl JH. MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages. J Biol Chem. 2008;283(48):33175–82. doi: 10.1074/jbc.M804478200 18772134; PubMed Central PMCID: PMC2586260.

38. Nian H, Geng WQ, Cui HL, Bao MJ, Zhang ZN, Zhang M, et al. R-848 triggers the expression of TLR7/8 and suppresses HIV replication in monocytes. BMC Infect Dis. 2012;12:5. Epub 2012/01/17. 1471-2334-12-5 [pii] doi: 10.1186/1471-2334-12-5 22243920; PubMed Central PMCID: PMC3274444.

39. Chang JJ, Lacas A, Lindsay RJ, Doyle EH, Axten KL, Pereyra F, et al. Differential regulation of toll-like receptor pathways in acute and chronic HIV-1 infection. AIDS. 2012;26(5):533–41. Epub 2012/01/03. doi: 10.1097/QAD.0b013e32834f3167 22210629.

40. Schlaepfer E, Speck RF. TLR8 activates HIV from latently infected cells of myeloid-monocytic origin directly via the MAPK pathway and from latently infected CD4+ T cells indirectly via TNF-alpha. J Immunol. 2011;186(7):4314–24. Epub 2011/03/02. jimmunol.1003174 [pii] doi: 10.4049/jimmunol.1003174 21357269.

41. Baenziger S, Heikenwalder M, Johansen P, Schlaepfer E, Hofer U, Miller RC, et al. Triggering TLR7 in mice induces immune activation and lymphoid system disruption, resembling HIV-mediated pathology. Blood. 2009;113(2):377–88. Epub 2008/10/01. doi: 10.1182/blood-2008-04-151712 18824599.

42. Chattergoon MA, Latanich R, Quinn J, Winter ME, Buckheit RW 3rd, Blankson JN, et al. HIV and HCV activate the inflammasome in monocytes and macrophages via endosomal Toll-like receptors without induction of type 1 interferon. PLoS Pathog. 2014;10(5):e1004082. doi: 10.1371/journal.ppat.1004082 24788318; PubMed Central PMCID: PMC4006909.

43. Guo H, Gao J, Taxman DJ, Ting JP, Su L. HIV-1 infection induces interleukin-1beta production via TLR8 protein-dependent and NLRP3 inflammasome mechanisms in human monocytes. J Biol Chem. 2014;289(31):21716–26. doi: 10.1074/jbc.M114.566620 24939850; PubMed Central PMCID: PMC4118130.

44. Oh DY, Taube S, Hamouda O, Kucherer C, Poggensee G, Jessen H, et al. A functional toll-like receptor 8 variant is associated with HIV disease restriction. J Infect Dis. 2008;198(5):701–9. Epub 2008/07/09. doi: 10.1086/590431 18605904.

45. Roeth JF, Collins KL. Human immunodeficiency virus type 1 Nef: adapting to intracellular trafficking pathways. Microbiol Mol Biol Rev. 2006;70(2):548–63. Epub 2006/06/09. 70/2/548 [pii] doi: 10.1128/MMBR.00042-05 16760313; PubMed Central PMCID: PMC1489538.

46. Jouve M, Sol-Foulon N, Watson S, Schwartz O, Benaroch P. HIV-1 buds and accumulates in "nonacidic" endosomes of macrophages. Cell Host Microbe. 2007;2(2):85–95. Epub 2007/11/17. S1931-3128(07)00159-X [pii] doi: 10.1016/j.chom.2007.06.011 18005723.

47. Kihara A, Kabeya Y, Ohsumi Y, Yoshimori T. Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO reports. 2001;2(4):330–5. doi: 10.1093/embo-reports/kve061 11306555; PubMed Central PMCID: PMC1083858.

48. Nobukuni T, Joaquin M, Roccio M, Dann SG, Kim SY, Gulati P, et al. Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci U S A. 2005;102(40):14238–43. doi: 10.1073/pnas.0506925102 16176982; PubMed Central PMCID: PMC1242323.

49. Chaumorcel M, Lussignol M, Mouna L, Cavignac Y, Fahie K, Cotte-Laffitte J, et al. The human cytomegalovirus protein TRS1 inhibits autophagy via its interaction with Beclin 1. J Virol. 2012;86(5):2571–84. doi: 10.1128/JVI.05746-11 22205736; PubMed Central PMCID: PMC3302257.

50. Hernaez B, Cabezas M, Munoz-Moreno R, Galindo I, Cuesta-Geijo MA, Alonso C. A179L, a new viral Bcl2 homolog targeting Beclin 1 autophagy related protein. Curr Mol Med. 2013;13(2):305–16. 23228131.

51. Orvedahl A, Alexander D, Talloczy Z, Sun Q, Wei Y, Zhang W, et al. HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe. 2007;1(1):23–35. doi: 10.1016/j.chom.2006.12.001 18005679.

52. Liang C, E X, Jung JU. Downregulation of autophagy by herpesvirus Bcl-2 homologs. Autophagy. 2008;4(3):268–72. 17993780.

53. Ku B, Woo JS, Liang C, Lee KH, Hong HS, E X, et al. Structural and biochemical bases for the inhibition of autophagy and apoptosis by viral BCL-2 of murine gamma-herpesvirus 68. PLoS Pathog. 2008;4(2):e25. doi: 10.1371/journal.ppat.0040025 18248095; PubMed Central PMCID: PMC2222952.

54. Gannage M, Dormann D, Albrecht R, Dengjel J, Torossi T, Ramer PC, et al. Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes. Cell Host Microbe. 2009;6(4):367–80. doi: 10.1016/j.chom.2009.09.005 19837376; PubMed Central PMCID: PMC2774833.

55. Gartner S, Markovits P, Markovitz DM, Kaplan MH, Gallo RC, Popovic M. The role of mononuclear phagocytes in HTLV-III/LAV infection. Science. 1986;233(4760):215–9. Epub 1986/07/11. 3014648.

56. Popovic M, Gartner S, Read-Connole E, Beaver B, Reitz M. Cell tropism and expression of HIV-1 isolates in natural targets. In: Girard M, Valette L, editors. Retroviruses of Human AIDS and Related Animal Diseases, Colloque Des Cent Gardes. 3. Marnes-La-Coquette, France: Pasteur Vaccins; 1988. p. 21–7.

57. Campbell GR, Spector SA. CCL2 increases X4-tropic HIV-1 entry into resting CD4+ T cells. J Biol Chem. 2008;283(45):30745–53. Epub 2008/09/12. M804112200 [pii] doi: 10.1074/jbc.M804112200 18784079; PubMed Central PMCID: PMC2576528.

58. Wei X, Decker JM, Liu H, Zhang Z, Arani RB, Kilby JM, et al. Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother. 2002;46(6):1896–905. 12019106; PubMed Central PMCID: PMC127242.

59. Englund G, Theodore TS, Freed EO, Engelman A, Martin MA. Integration is required for productive infection of monocyte-derived macrophages by human immunodeficiency virus type 1. J Virol. 1995;69(5):3216–9. Epub 1995/05/01. 7707554; PubMed Central PMCID: PMC189028.

60. Petit C, Buseyne F, Boccaccio C, Abastado JP, Heard JM, Schwartz O. Nef is required for efficient HIV-1 replication in cocultures of dendritic cells and lymphocytes. Virology. 2001;286(1):225–36. doi: 10.1006/viro.2001.0984 11448175.

61. He J, Choe S, Walker R, Di Marzio P, Morgan DO, Landau NR. Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. J Virol. 1995;69(11):6705–11. Epub 1995/11/01. 7474080; PubMed Central PMCID: PMC189580.

62. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45. Epub 2001/05/09. 11328886; PubMed Central PMCID: PMC55695.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#