#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

IscR Is Essential for Type III Secretion and Virulence


Bacterial pathogens use regulators that sense environmental cues to enhance their fitness. Here, we identify a transcriptional regulator in the human gut pathogen, Yersinia pseudotuberculosis, which controls a specialized secretion system essential for bacterial growth in mammalian tissues. This regulator was shown in other bacterial species to alter its activity in response to changes in iron concentration and oxidative stress, but has never been studied in Yersinia. Importantly, Y. pseudotuberculosis experiences large changes in iron bioavailability upon transit from the gut to deeper tissues and iron is a critical component in Yersinia virulence, as individuals with iron overload disorders have enhanced susceptibility to systemic Yersinia infections. Our work places this iron-modulated transcriptional regulator within the regulatory network that controls virulence gene expression in Y. pseudotuberculosis, identifying it as a potential new target for antimicrobial agents.


Vyšlo v časopise: IscR Is Essential for Type III Secretion and Virulence. PLoS Pathog 10(6): e32767. doi:10.1371/journal.ppat.1004194
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004194

Souhrn

Bacterial pathogens use regulators that sense environmental cues to enhance their fitness. Here, we identify a transcriptional regulator in the human gut pathogen, Yersinia pseudotuberculosis, which controls a specialized secretion system essential for bacterial growth in mammalian tissues. This regulator was shown in other bacterial species to alter its activity in response to changes in iron concentration and oxidative stress, but has never been studied in Yersinia. Importantly, Y. pseudotuberculosis experiences large changes in iron bioavailability upon transit from the gut to deeper tissues and iron is a critical component in Yersinia virulence, as individuals with iron overload disorders have enhanced susceptibility to systemic Yersinia infections. Our work places this iron-modulated transcriptional regulator within the regulatory network that controls virulence gene expression in Y. pseudotuberculosis, identifying it as a potential new target for antimicrobial agents.


Zdroje

1. TroisfontainesP, CornelisGR (2005) Type III secretion: more systems than you think. Physiology (Bethesda) 20: 326–339.

2. CoburnB, SekirovI, FinlayBB (2007) Type III secretion systems and disease. Clin Microbiol Rev 20: 535–549.

3. ZhangY, MenaP, RomanovG, LinJS, SmileyST, et al. (2012) A protective epitope in type III effector YopE is a major CD8 T cell antigen during primary infection with Yersinia pseudotuberculosis. Infect Immun 80: 206–214.

4. BliskaJB, WangX, ViboudGI, BrodskyIE (2013) Modulation of innate immune responses by Yersinia type III secretion system translocators and effectors. Cell Microbiol 15: 1622–1631.

5. BrubakerRR (1983) The Vwa+ virulence factor of yersiniae: the molecular basis of the attendant nutritional requirement for Ca++. Rev Infect Dis 5 Suppl 4S748–758.

6. HueckCJ (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62: 379–433.

7. GemskiP, LazereJR, CaseyT, WohlhieterJA (1980) Presence of a virulence-associated plasmid in Yersinia pseudotuberculosis. Infect Immun 28: 1044–1047.

8. RuckdeschelK, RoggenkampA, LafontV, MangeatP, HeesemannJ, et al. (1997) Interaction of Yersinia enterocolitica with macrophages leads to macrophage cell death through apoptosis. Infect Immun 65: 4813–4821.

9. LarocheY, van BouchauteM, CornelisG (1984) A restriction map of virulence plasmid pVYE439-80 from a serogroup 9 Yersinia enterocolitica strain. Plasmid 12: 67–70.

10. CornelisGR (2006) The type III secretion injectisome. Nat Rev Microbiol 4: 811–825.

11. YipCK, StrynadkaNC (2006) New structural insights into the bacterial type III secretion system. Trends Biochem Sci 31: 223–230.

12. DewoodyRS, MerrittPM, MarketonMM (2013) Regulation of the Yersinia type III secretion system: traffic control. Front Cell Infect Microbiol 3: 4.

13. BlaylockB, RiordanKE, MissiakasDM, SchneewindO (2006) Characterization of the Yersinia enterocolitica type III secretion ATPase YscN and its regulator, YscL. J Bacteriol 188: 3525–3534.

14. MuellerCA, BrozP, CornelisGR (2008) The type III secretion system tip complex and translocon. Mol Microbiol 68: 1085–1095.

15. CornelisGR, BolandA, BoydAP, GeuijenC, IriarteM, et al. (1998) The virulence plasmid of Yersinia, an antihost genome. Microbiol Mol Biol Rev 62: 1315–1352.

16. Lambert de RouvroitC, SluitersC, CornelisGR (1992) Role of the transcriptional activator, VirF, and temperature in the expression of the pYV plasmid genes of Yersinia enterocolitica. Mol Microbiol 6: 395–409.

17. MichielsT, VanooteghemJC, Lambert de RouvroitC, ChinaB, GustinA, et al. (1991) Analysis of virC, an operon involved in the secretion of Yop proteins by Yersinia enterocolitica. J Bacteriol 173: 4994–5009.

18. BergmanT, HakanssonS, ForsbergA, NorlanderL, MacellaroA, et al. (1991) Analysis of the V antigen lcrGVH-yopBD operon of Yersinia pseudotuberculosis: evidence for a regulatory role of LcrH and LcrV. J Bacteriol 173: 1607–1616.

19. HoeNP, MinionFC, GoguenJD (1992) Temperature sensing in Yersinia pestis: regulation of yopE transcription by lcrF. J Bacteriol 174: 4275–4286.

20. CornelisG, SluitersC, de RouvroitCL, MichielsT (1989) Homology between virF, the transcriptional activator of the Yersinia virulence regulon, and AraC, the Escherichia coli arabinose operon regulator. J Bacteriol 171: 254–262.

21. CornelisG, VanootegemJC, SluitersC (1987) Transcription of the yop regulon from Y. enterocolitica requires trans acting pYV and chromosomal genes. Microb Pathog 2: 367–379.

22. ChinaB, MichielsT, CornelisGR (1990) The pYV plasmid of Yersinia encodes a lipoprotein, YlpA, related to TraT. Mol Microbiol 4: 1585–1593.

23. HoeNP, GoguenJD (1993) Temperature sensing in Yersinia pestis: translation of the LcrF activator protein is thermally regulated. J Bacteriol 175: 7901–7909.

24. BohmeK, SteinmannR, KortmannJ, SeekircherS, HerovenAK, et al. (2012) Concerted actions of a thermo-labile regulator and a unique intergenic RNA thermosensor control Yersinia virulence. PLoS Pathog 8: e1002518.

25. RodionovDA, GelfandMS, ToddJD, CursonAR, JohnstonAW (2006) Computational reconstruction of iron- and manganese-responsive transcriptional networks in alpha-proteobacteria. PLoS Comput Biol 2: e163.

26. ShepardW, SoutourinaO, CourtoisE, EnglandP, HaouzA, et al. (2011) Insights into the Rrf2 repressor family—the structure of CymR, the global cysteine regulator of Bacillus subtilis. FEBS J 278: 2689–2701.

27. FleischhackerAS, StubnaA, HsuehKL, GuoY, TeterSJ, et al. (2012) Characterization of the [2Fe–2S] cluster of Escherichia coli transcription factor IscR. Biochemistry 51: 4453–4462.

28. WuY, OuttenFW (2009) IscR controls iron-dependent biofilm formation in Escherichia coli by regulating type I fimbria expression. J Bacteriol 191: 1248–1257.

29. YeoWS, LeeJH, LeeKC, RoeJH (2006) IscR acts as an activator in response to oxidative stress for the suf operon encoding Fe-S assembly proteins. Mol Microbiol 61: 206–218.

30. GielJL, RodionovD, LiuM, BlattnerFR, KileyPJ (2006) IscR-dependent gene expression links iron-sulphur cluster assembly to the control of O2-regulated genes in Escherichia coli. Mol Microbiol 60: 1058–1075.

31. RajagopalanS, TeterSJ, ZwartPH, BrennanRG, PhillipsKJ, et al. (2013) Studies of IscR reveal a unique mechanism for metal-dependent regulation of DNA binding specificity. Nat Struct Mol Biol 20: 740–747.

32. GielJL, NesbitAD, MettertEL, FleischhackerAS, WantaBT, et al. (2013) Regulation of iron-sulphur cluster homeostasis through transcriptional control of the Isc pathway by [2Fe-2S]-IscR in Escherichia coli. Mol Microbiol 87: 478–492.

33. NesbitAD, GielJL, RoseJC, KileyPJ (2009) Sequence-specific binding to a subset of IscR-regulated promoters does not require IscR Fe-S cluster ligation. J Mol Biol 387: 28–41.

34. SchwartzCJ, GielJL, PatschkowskiT, LutherC, RuzickaFJ, et al. (2001) IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins. Proc Natl Acad Sci U S A 98: 14895–14900.

35. LeeKC, YeoWS, RoeJH (2008) Oxidant-responsive induction of the suf operon, encoding a Fe-S assembly system, through Fur and IscR in Escherichia coli. J Bacteriol 190: 8244–8247.

36. BeinertH, HolmRH, MunckE (1997) Iron-sulfur clusters: nature's modular, multipurpose structures. Science 277: 653–659.

37. Rincon-EnriquezG, CreteP, BarrasF, PyB (2008) Biogenesis of Fe/S proteins and pathogenicity: IscR plays a key role in allowing Erwinia chrysanthemi to adapt to hostile conditions. Mol Microbiol 67: 1257–1273.

38. KimSH, LeeBY, LauGW, ChoYH (2009) IscR modulates catalase A (KatA) activity, peroxide resistance and full virulence of Pseudomonas aeruginosa PA14. J Microbiol Biotechnol 19: 1520–1526.

39. Jones-CarsonJ, LaughlinJ, HamadMA, StewartAL, VoskuilMI, et al. (2008) Inactivation of [Fe-S] metalloproteins mediates nitric oxide-dependent killing of Burkholderia mallei. PLoS One 3: e1976.

40. LimJG, ChoiSH (2014) IscR is a global regulator essential for pathogenesis of Vibrio vulnificus and induced by host cells. Infect Immun 82: 569–578.

41. MurphyER, PayneSM (2007) RyhB, an iron-responsive small RNA molecule, regulates Shigella dysenteriae virulence. Infect Immun 75: 3470–3477.

42. EllermeierJR, SlauchJM (2008) Fur regulates expression of the Salmonella pathogenicity island 1 type III secretion system through HilD. J Bacteriol 190: 476–486.

43. AuerbuchV, GolenbockDT, IsbergRR (2009) Innate immune recognition of Yersinia pseudotuberculosis type III secretion. PLoS Pathog 5: e1000686.

44. ViboudGI, BliskaJB (2005) Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis. Annu Rev Microbiol 59: 69–89.

45. KirbyJE, VogelJP, AndrewsHL, IsbergRR (1998) Evidence for pore-forming ability by Legionella pneumophila. Mol Microbiol 27: 323–336.

46. KwuanL, AdamsW, AuerbuchV (2013) Impact of host membrane pore formation by the Yersinia pseudotuberculosis type III secretion system on the macrophage innate immune response. Infect Immun 81: 905–914.

47. BliskaJB, GuanKL, DixonJE, FalkowS (1991) Tyrosine phosphate hydrolysis of host proteins by an essential Yersinia virulence determinant. Proc Natl Acad Sci U S A 88: 1187–1191.

48. SheridanJJ, LogueCM, McDowellDA, BlairIS, HegartyT (1998) A study of the growth kinetics of Yersinia enterocolitica serotype O:3 in pure and meat culture systems. J Appl Microbiol 85: 293–301.

49. GoverdeRL, KustersJG, Huis in 't VeldJH (1994) Growth rate and physiology of Yersinia enterocolitica; influence of temperature and presence of the virulence plasmid. J Appl Bacteriol 77: 96–104.

50. WilharmG, LehmannV, KraussK, LehnertB, RichterS, et al. (2004) Yersinia enterocolitica type III secretion depends on the proton motive force but not on the flagellar motor components MotA and MotB. Infect Immun 72: 4004–4009.

51. PetterssonJ, NordfelthR, DubininaE, BergmanT, GustafssonM, et al. (1996) Modulation of virulence factor expression by pathogen target cell contact. Science 273: 1231–1233.

52. KauppiAM, NordfelthR, UvellH, Wolf-WatzH, ElofssonM (2003) Targeting bacterial virulence: inhibitors of type III secretion in Yersinia. Chem Biol 10: 241–249.

53. WattiauP, CornelisGR (1994) Identification of DNA sequences recognized by VirF, the transcriptional activator of the Yersinia yop regulon. J Bacteriol 176: 3878–3884.

54. SkurnikM, ToivanenP (1992) LcrF is the temperature-regulated activator of the yadA gene of Yersinia enterocolitica and Yersinia pseudotuberculosis. J Bacteriol 174: 2047–2051.

55. EzratyB, VergnesA, BanzhafM, DuvergerY, HuguenotA, et al. (2013) Fe-S cluster biosynthesis controls uptake of aminoglycosides in a ROS-less death pathway. Science 340: 1583–1587.

56. ZhengM, WangX, TempletonLJ, SmulskiDR, LaRossaRA, et al. (2001) DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol 183: 4562–4570.

57. McCanceRA, WiddowsonEM (1938) The absorption and excretion of iron following oral and intravenous administration. J Physiol 94: 148–154.

58. MiretS, SimpsonRJ, McKieAT (2003) Physiology and molecular biology of dietary iron absorption. Annu Rev Nutr 23: 283–301.

59. MartinRB, SavoryJ, BrownS, BertholfRL, WillsMR (1987) Transferrin binding of Al3+ and Fe3+. Clin Chem 33: 405–407.

60. AisenP, LeibmanA, ZweierJ (1978) Stoichiometric and site characteristics of the binding of iron to human transferrin. J Biol Chem 253: 1930–1937.

61. KretchmarSA, ReyesZE, RaymondKN (1988) The spectroelectrochemical determination of the reduction potential of diferric serum transferrin. Biochim Biophys Acta 956: 85–94.

62. SkaarEP (2010) The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog 6: e1000949.

63. Balada-LlasatJM, MecsasJ (2006) Yersinia has a tropism for B and T cell zones of lymph nodes that is independent of the type III secretion system. PLoS Pathog 2: e86.

64. CrimminsGT, MohammadiS, GreenER, BergmanMA, IsbergRR, et al. (2012) Identification of MrtAB, an ABC transporter specifically required for Yersinia pseudotuberculosis to colonize the mesenteric lymph nodes. PLoS Pathog 8: e1002828.

65. JangS, ImlayJA (2007) Micromolar intracellular hydrogen peroxide disrupts metabolism by damaging iron-sulfur enzymes. J Biol Chem 282: 929–937.

66. JangS, ImlayJA (2010) Hydrogen peroxide inactivates the Escherichia coli Isc iron-sulphur assembly system, and OxyR induces the Suf system to compensate. Mol Microbiol 78: 1448–1467.

67. FlintDH, TuminelloJF, EmptageMH (1993) The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J Biol Chem 268: 22369–22376.

68. ChengLW, AndersonDM, SchneewindO (1997) Two independent type III secretion mechanisms for YopE in Yersinia enterocolitica. Mol Microbiol 24: 757–765.

69. MecsasJ, RaupachB, FalkowS (1998) The Yersinia Yops inhibit invasion of Listeria, Shigella and Edwardsiella but not Salmonella into epithelial cells. Mol Microbiol 28: 1269–1281.

70. WarrensAN, JonesMD, LechlerRI (1997) Splicing by overlap extension by PCR using asymmetric amplification: an improved technique for the generation of hybrid proteins of immunological interest. Gene 186: 29–35.

71. AndrewsHL, VogelJP, IsbergRR (1998) Identification of linked Legionella pneumophila genes essential for intracellular growth and evasion of the endocytic pathway. Infect Immun 66: 950–958.

72. MerriamJJ, MathurR, Maxfield-BoumilR, IsbergRR (1997) Analysis of the Legionella pneumophila fliI gene: intracellular growth of a defined mutant defective for flagellum biosynthesis. Infect Immun 65: 2497–2501.

73. ChangAC, CohenSN (1978) Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134: 1141–1156.

74. RoseRE (1988) The nucleotide sequence of pACYC184. Nucleic Acids Res 16: 355.

75. WalkerKA, MillerVL (2004) Regulation of the Ysa type III secretion system of Yersinia enterocolitica by YsaE/SycB and YsrS/YsrR. J Bacteriol 186: 4056–4066.

76. BergsbakenT, CooksonBT (2007) Macrophage activation redirects yersinia-infected host cell death from apoptosis to caspase-1-dependent pyroptosis. PLoS Pathog 3: e161.

77. ChiangSL, RubinEJ (2002) Construction of a mariner-based transposon for epitope-tagging and genomic targeting. Gene 296: 179–185.

78. LawrenzMB, MillerVL (2007) Comparative analysis of the regulation of rovA from the pathogenic yersiniae. J Bacteriol 189: 5963–5975.

79. AuerbuchV, IsbergRR (2007) Growth of Yersinia pseudotuberculosis in mice occurs independently of Toll-like receptor 2 expression and induction of interleukin-10. Infect Immun 75: 3561–3570.

80. YaoJQ, YuF (2011) DEB: A web interface for RNA-seq digital gene expression analysis. Bioinformation 7: 44–z45.

81. AuerbuchV, BrockstedtDG, Meyer-MorseN, O'RiordanM, PortnoyDA (2004) Mice lacking the type I interferon receptor are resistant to Listeria monocytogenes. J Exp Med 200: 527–533.

82. ArafahS, RossoML, RehaumeL, HancockRE, SimonetM, et al. (2009) An iron-regulated LysR-type element mediates antimicrobial peptide resistance and virulence in Yersinia pseudotuberculosis. Microbiology 155: 2168–2181.

83. KrzywinskiM, ScheinJ, BirolI, ConnorsJ, GascoyneR, et al. (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19: 1639–1645.

84. EnglC, BeekAT, BekkerM, de MattosJT, JovanovicG, et al. (2011) Dissipation of proton motive force is not sufficient to induce the phage shock protein response in Escherichia coli. Curr Microbiol 62: 1374–1385.

85. SchneiderCA, RasbandWS, EliceiriKW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9: 671–675.

86. LarkinMA, BlackshieldsG, BrownNP, ChennaR, McGettiganPA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948.

87. SchianoCA, BellowsLE, LathemWW (2010) The small RNA chaperone Hfq is required for the virulence of Yersinia pseudotuberculosis. Infect Immun 78: 2034–2044.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#