#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Differential Activation of Acid Sphingomyelinase and Ceramide Release Determines Invasiveness of into Brain Endothelial Cells


Neisseria meningitidis, an obligate human pathogen, is a causative agent of septicemia and meningitis worldwide. Meningococcal infection manifests in a variety of forms, including meningitis, meningococcemia with meningitis or meningococcemia without obvious meningitis. The interaction of N. meningitidis with human cells lining the blood vessels of the blood-cerebrospinal fluid barrier is a prerequisite for the development of meningitis. As a major pathogenicity factor, the meningococcal outer membrane protein Opc enhances bacterial entry into brain endothelial cells, however, mechanisms underlying trapping of receptors and signaling molecules following this interaction remained elusive. We now show that Opc-expressing meningococci activate acid sphingomyelinase (ASM) in brain endothelial cells, which hydrolyses sphingomyelin to cause ceramide release and formation of extended ceramide-enriched membrane platforms wherein ErbB2, an important receptor involved in bacterial uptake, clusters. Mechanistically, ASM activation relied on binding of N. meningitidis to its attachment receptor, HSPG, followed by activation of PC-PLC. Meningococcal isolates of the ST-11 clonal complex, which are reported to be more likely to cause severe sepsis, but rarely meningitis, barely invaded brain endothelial cells and revealed a highly restricted ability to induce ASM and ceramide release. Thus, our results unravel a differential activation of the ASM/ceramide system by the species N. meningitidis determining its invasiveness into brain endothelial cells.


Vyšlo v časopise: Differential Activation of Acid Sphingomyelinase and Ceramide Release Determines Invasiveness of into Brain Endothelial Cells. PLoS Pathog 10(6): e32767. doi:10.1371/journal.ppat.1004160
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004160

Souhrn

Neisseria meningitidis, an obligate human pathogen, is a causative agent of septicemia and meningitis worldwide. Meningococcal infection manifests in a variety of forms, including meningitis, meningococcemia with meningitis or meningococcemia without obvious meningitis. The interaction of N. meningitidis with human cells lining the blood vessels of the blood-cerebrospinal fluid barrier is a prerequisite for the development of meningitis. As a major pathogenicity factor, the meningococcal outer membrane protein Opc enhances bacterial entry into brain endothelial cells, however, mechanisms underlying trapping of receptors and signaling molecules following this interaction remained elusive. We now show that Opc-expressing meningococci activate acid sphingomyelinase (ASM) in brain endothelial cells, which hydrolyses sphingomyelin to cause ceramide release and formation of extended ceramide-enriched membrane platforms wherein ErbB2, an important receptor involved in bacterial uptake, clusters. Mechanistically, ASM activation relied on binding of N. meningitidis to its attachment receptor, HSPG, followed by activation of PC-PLC. Meningococcal isolates of the ST-11 clonal complex, which are reported to be more likely to cause severe sepsis, but rarely meningitis, barely invaded brain endothelial cells and revealed a highly restricted ability to induce ASM and ceramide release. Thus, our results unravel a differential activation of the ASM/ceramide system by the species N. meningitidis determining its invasiveness into brain endothelial cells.


Zdroje

1. UnkmeirA, LatschK, DietrichG, WintermeyerE, SchinkeB, et al. (2002) Fibronectin mediates Opc-dependent internalization of Neisseria meningitidis in human brain microvascular endothelial cells. Mol Microbiol 46: 933–946.

2. Sa E. CunhaC, GriffithsNJ, VirjiM (2010) Neisseria meningitidis Opc invasin binds to the sulphated tyrosines of activated vitronectin to attach to and invade human brain endothelial cells. PLoS Pathog 6: e1000911.

3. VirjiM, SaundersJR, SimsG, MakepeaceK, MaskellD, et al. (1993) Pilus-facilitated adherence of Neisseria meningitidis to human epithelial and endothelial cells: modulation of adherence phenotype occurs concurrently with changes in primary amino acid sequence and the glycosylation status of pilin. Mol Microbiol 10: 1013–1028.

4. ScheuerpflugI, RudelT, RyllR, PanditJ, MeyerTF (1999) Roles of PilC and PilE proteins in pilus-mediated adherence of Neisseria gonorrhoeae and Neisseria meningitidis to human erythrocytes and endothelial and epithelial cells. Infect Immun 67: 834–843.

5. JenFE, WarrenMJ, SchulzBL, PowerPM, SwordsWE, et al. (2013) Dual pili post-translational modifications synergize to mediate meningococcal adherence to platelet activating factor receptor on human airway cells. PLoS Pathog 9: e1003377.

6. VirjiM (2009) Pathogenic neisseriae: surface modulation, pathogenesis and infection control. Nat Rev Microbiol 7: 274–286.

7. VirjiM, MakepeaceK, FergusonDJ, AchtmanM, MoxonER (1993) Meningococcal Opa and Opc proteins: their role in colonization and invasion of human epithelial and endothelial cells. Mol Microbiol 10: 499–510.

8. VirjiM, MakepeaceK, FergusonDJ, AchtmanM, SarkariJ, et al. (1992) Expression of the Opc protein correlates with invasion of epithelial and endothelial cells by Neisseria meningitidis. Mol Microbiol 6: 2785–2795.

9. VirjiM, KayhtyH, FergusonDJ, AlexandrescuC, HeckelsJE, et al. (1991) The role of pili in the interactions of pathogenic Neisseria with cultured human endothelial cells. Mol Microbiol 5: 1831–1841.

10. VirjiM, WattSM, BarkerS, MakepeaceK, DoyonnasR (1996) The N-domain of the human CD66a adhesion molecule is a target for Opa proteins of Neisseria meningitidis and Neisseria gonorrhoeae. Mol Microbiol 22: 929–939.

11. NassifX (1999) Interaction mechanisms of encapsulated meningococci with eucaryotic cells: what does this tell us about the crossing of the blood-brain barrier by Neisseria meningitidis? Curr Opin Microbiol 2: 71–77.

12. MerzAJ, SoM (2000) Interactions of pathogenic neisseriae with epithelial cell membranes. Annu Rev Cell Dev Biol 16: 423–457.

13. VirjiM, MakepeaceK, MoxonER (1994) Distinct mechanisms of interactions of Opc-expressing meningococci at apical and basolateral surfaces of human endothelial cells; the role of integrins in apical interactions. Mol Microbiol 14: 173–184.

14. VirjiM, MakepeaceK, PeakIR, FergusonDJ, JenningsMP, et al. (1995) Opc- and pilus-dependent interactions of meningococci with human endothelial cells: molecular mechanisms and modulation by surface polysaccharides. Mol Microbiol 18: 741–754.

15. AchtmanM (1995) Epidemic spread and antigenic variability of Neisseria meningitidis. Trends Microbiol 3: 186–192.

16. ZhuP, MorelliG, AchtmanM (1999) The opcA and (psi)opcB regions in Neisseria: genes, pseudogenes, deletions, insertion elements and DNA islands. Mol Microbiol 33: 635–650.

17. SarkariJ, PanditN, MoxonER, AchtmanM (1994) Variable expression of the Opc outer membrane protein in Neisseria meningitidis is caused by size variation of a promoter containing poly-cytidine. Mol Microbiol 13: 207–217.

18. SeilerA, ReinhardtR, SarkariJ, CaugantDA, AchtmanM (1996) Allelic polymorphism and site-specific recombination in the opc locus of Neisseria meningitidis. Mol Microbiol 19: 841–856.

19. KrizP, VlckovaJ, BobakM (1995) Targeted vaccination with meningococcal polysaccharide vaccine in one district of the Czech Republic. Epidemiol Infect 115: 411–418.

20. WhalenCM, HockinJC, RyanA, AshtonF (1995) The changing epidemiology of invasive meningococcal disease in Canada, 1985 through 1992. Emergence of a virulent clone of Neisseria meningitidis. Jama 273: 390–394.

21. SokolovaO, HeppelN, JagerhuberR, KimKS, FroschM, et al. (2004) Interaction of Neisseria meningitidis with human brain microvascular endothelial cells: role of MAP- and tyrosine kinases in invasion and inflammatory cytokine release. Cell Microbiol 6: 1153–1166.

22. SlaninaH, KonigA, HeblingS, HauckCR, FroschM, et al. (2010) Entry of Neisseria meningitidis into mammalian cells requires the Src family protein tyrosine kinases. Infect Immun 78: 1905–1914.

23. SlaninaH, HeblingS, HauckCR, Schubert-UnkmeirA (2012) Cell invasion by Neisseria meningitidis requires a functional interplay between the focal adhesion kinase, Src and cortactin. PLoS One 7: e39613.

24. De VriesFP, ColeR, DankertJ, FroschM, Van PuttenJPM (1998) Neisseria meningitidis producing the Opc adhesin binds epithelial cell proteoglycan receptors. Molecular Microbiology 27: 1203–1212.

25. SarrazinS, LamannaWC, EskoJD (2011) Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 3: a004952.

26. BradleyCJ, GriffithsNJ, RoweHA, HeydermanRS, VirjiM (2005) Critical determinants of the interactions of capsule-expressing Neisseria meningitidis with host cells: the role of receptor density in increased cellular targeting via the outer membrane Opa proteins. Cellular Microbiology 7: 1490–1503.

27. GrassmeH, JekleA, RiehleA, SchwarzH, BergerJ, et al. (2001) CD95 signaling via ceramide-rich membrane rafts. J Biol Chem 276: 20589–20596.

28. CremestiA, ParisF, GrassmeH, HollerN, TschoppJ, et al. (2001) Ceramide enables fas to cap and kill. J Biol Chem 276: 23954–23961.

29. GrassmeH, JendrossekV, GulbinsE (2001) Molecular mechanisms of bacteria induced apoptosis. Apoptosis 6: 441–445.

30. GrassmeH, CremestiA, KolesnickR, GulbinsE (2003) Ceramide-mediated clustering is required for CD95-DISC formation. Oncogene 22: 5457–5470.

31. GrassmeH, JendrossekV, BockJ, RiehleA, GulbinsE (2002) Ceramide-rich membrane rafts mediate CD40 clustering. J Immunol 168: 298–307.

32. SantanaP, PenaLA, Haimovitz-FriedmanA, MartinS, GreenD, et al. (1996) Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 86: 189–199.

33. CharruyerA, GrazideS, BezombesC, MullerS, LaurentG, et al. (2005) UV-C light induces raft-associated acid sphingomyelinase and JNK activation and translocation independently on a nuclear signal. J Biol Chem 280: 19196–19204.

34. LacourS, HammannA, GrazideS, Lagadic-GossmannD, AthiasA, et al. (2004) Cisplatin-induced CD95 redistribution into membrane lipid rafts of HT29 human colon cancer cells. Cancer Res 64: 3593–3598.

35. GrammatikosG, TeichgraberV, CarpinteiroA, TrarbachT, WellerM, et al. (2007) Overexpression of acid sphingomyelinase sensitizes glioma cells to chemotherapy. Antioxid Redox Signal 9: 1449–1456.

36. ZhangY, LiX, BeckerKA, GulbinsE (2009) Ceramide-enriched membrane domains–structure and function. Biochim Biophys Acta 1788: 178–183.

37. GrassmeH, GulbinsE, BrennerB, FerlinzK, SandhoffK, et al. (1997) Acidic sphingomyelinase mediates entry of N. gonorrhoeae into nonphagocytic cells. Cell 91: 605–615.

38. HauckCR, GrassmeH, BockJ, JendrossekV, FerlinzK, et al. (2000) Acid sphingomyelinase is involved in CEACAM receptor-mediated phagocytosis of Neisseria gonorrhoeae. FEBS Lett 478: 260–266.

39. GrassmeH, JendrossekV, RiehleA, von KurthyG, BergerJ, et al. (2003) Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat Med 9: 322–330.

40. GrassmeH, RiehleA, WilkerB, GulbinsE (2005) Rhinoviruses infect human epithelial cells via ceramide-enriched membrane platforms. J Biol Chem 280: 26256–26262.

41. AvotaE, GulbinsE, Schneider-SchauliesS (2011) DC-SIGN mediated sphingomyelinase-activation and ceramide generation is essential for enhancement of viral uptake in dendritic cells. PLoS Pathog 7: e1001290.

42. EsenM, SchreinerB, JendrossekV, LangF, FassbenderK, et al. (2001) Mechanisms of Staphylococcus aureus induced apoptosis of human endothelial cells. Apoptosis 6: 431–439.

43. SchutzeS, PotthoffK, MachleidtT, BerkovicD, WiegmannK, et al. (1992) TNF activates NF-kappa B by phosphatidylcholine-specific phospholipase C-induced “acidic” sphingomyelin breakdown. Cell 71: 765–776.

44. WiegmannK, SchutzeS, MachleidtT, WitteD, KronkeM (1994) Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling. Cell 78: 1005–1015.

45. JosephB, SchwarzRF, LinkeB, BlomJ, BeckerA, et al. (2011) Virulence evolution of the human pathogen Neisseria meningitidis by recombination in the core and accessory genome. PLoS One 6: e18441.

46. HoffmannI, EugeneE, NassifX, CouraudPO, BourdoulousS (2001) Activation of ErbB2 receptor tyrosine kinase supports invasion of endothelial cells by Neisseria meningitidis. J Cell Biol 155: 133–143.

47. LambotinM, HoffmannI, Laran-ChichMP, NassifX, CouraudPO, et al. (2005) Invasion of endothelial cells by Neisseria meningitidis requires cortactin recruitment by a phosphoinositide-3-kinase/Rac1 signalling pathway triggered by the lipo-oligosaccharide. J Cell Sci 118: 3805–3816.

48. LinkeT, WilkeningG, LansmannS, MoczallH, BartelsenO, et al. (2001) Stimulation of acid sphingomyelinase activity by lysosomal lipids and sphingolipid activator proteins. Biol Chem 382: 283–290.

49. MerzAJ, EnnsCA, SoM (1999) Type IV pili of pathogenic Neisseriae elicit cortical plaque formation in epithelial cells. Mol Microbiol 32: 1316–1332.

50. EugeneE, HoffmannI, PujolC, CouraudPO, BourdoulousS, et al. (2002) Microvilli-like structures are associated with the internalization of virulent capsulated Neisseria meningitidis into vascular endothelial cells. J Cell Sci 115: 1231–1241.

51. CoureuilM, MikatyG, MillerF, LecuyerH, BernardC, et al. (2009) Meningococcal type IV pili recruit the polarity complex to cross the brain endothelium. Science 325: 83–87.

52. MagenauA, BenzingC, ProschogoN, DonAS, HejaziL, et al. (2011) Phagocytosis of IgG-coated polystyrene beads by macrophages induces and requires high membrane order. Traffic 12: 1730–1743.

53. MaidenMC, BygravesJA, FeilE, MorelliG, RussellJE, et al. (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95: 3140–3145.

54. YazdankhahSP, KrizP, TzanakakiG, KremastinouJ, KalmusovaJ, et al. (2004) Distribution of serogroups and genotypes among disease-associated and carried isolates of Neisseria meningitidis from the Czech Republic, Greece, and Norway. J Clin Microbiol 42: 5146–5153.

55. JolleyKA, KalmusovaJ, FeilEJ, GuptaS, MusilekM, et al. (2000) Carried meningococci in the Czech Republic: a diverse recombining population. J Clin Microbiol 38: 4492–4498.

56. ClausH, MaidenMC, WilsonDJ, McCarthyND, JolleyKA, et al. (2005) Genetic analysis of meningococci carried by children and young adults. J Infect Dis 191: 1263–1271.

57. CaugantDA (2008) Genetics and evolution of Neisseria meningitidis: importance for the epidemiology of meningococcal disease. Infect Genet Evol 8: 558–565.

58. NahrlichL, MainzJG, AdamsC, EngelC, HerrmannG, et al. (2013) Therapy of CF-patients with amitriptyline and placebo–a randomised, double-blind, placebo-controlled phase IIb multicenter, cohort-study. Cell Physiol Biochem 31: 505–512.

59. LappannM, HaagensenJA, ClausH, VogelU, MolinS (2006) Meningococcal biofilm formation: structure, development and phenotypes in a standardized continuous flow system. Mol Microbiol 62: 1292–1309.

60. StinsMF, GillesF, KimKS (1997) Selective expression of adhesion molecules on human brain microvascular endothelial cells. J Neuroimmunol 76: 81–90.

61. KamiichiA, FurihataT, KishidaS, OhtaY, SaitoK, et al. (2012) Establishment of a new conditionally immortalized cell line from human brain microvascular endothelial cells: a promising tool for human blood-brain barrier studies. Brain Res 1488: 113–122.

62. Gomez-CambroneroJ, HorwitzJ, Sha'afiRI (2003) Measurements of phospholipases A2, C, and D (PLA2, PLC, and PLD). In vitro microassays, analysis of enzyme isoforms, and intact-cell assays. Methods Mol Biol 218: 155–176.

63. VogelU, MorelliG, ZurthK, ClausH, KrienerE, et al. (1998) Necessity of molecular techniques to distinguish between Neisseria meningitidis strains isolated from patients with meningococcal disease and from their healthy contacts. J Clin Microbiol 36: 2465–2470.

64. BrehonyC, JolleyKA, MaidenMC (2007) Multilocus sequence typing for global surveillance of meningococcal disease. FEMS Microbiol Rev 31: 15–26.

65. BentleySD, VernikosGS, SnyderLA, ChurcherC, ArrowsmithC, et al. (2007) Meningococcal genetic variation mechanisms viewed through comparative analysis of serogroup C strain FAM18. PLoS Genet 3: e23.

66. McGuinnessBT, ClarkeIN, LambdenPR, BarlowAK, HeckelsJE, et al. (1991) Point mutation in meningococcal por A gene associated with increased endemic disease. The Lancet 337: 514–517.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#