#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Highly Conserved Bacterial RNase YbeY Is Essential in , Playing a Critical Role in Virulence, Stress Regulation, and RNA Processing


Bacteria adapt and survive unfavorable environments by quickly changing their gene expression and physiology, for example as pathogens do during infection of host cells. Gene expression is often determined by RNA turnover, a balance between transcription and RNA decay carried out by multiple RNases. The recently identified RNase YbeY was shown in E. coli to participate in rRNA maturation and 70 S ribosome quality control, however YbeY's roles in other organisms and the extent of functional conservation is unknown. Here, we show that YbeY is an essential RNase in the pathogen Vibrio cholerae, critical for cell fitness and general stress tolerance. We demonstrate that YbeY is crucial for 16 S rRNA 3′ end maturation, assembly of functional 70 S ribosomes and ribosome quality control. Moreover, YbeY regulates virulence-associated small RNAs and its depletion leads to an overall reduction in pathogenesis, exemplified by significantly decreased biofilm formation, mouse colonization and cholera toxin production. We also show that YbeY belongs to a minimal core set of RNases essential in most representative pathogens. The multifaceted roles of YbeY in several essential cellular processes and its highly conserved function across bacterial species, suggest that YbeY could be an attractive new antimicrobial target.


Vyšlo v časopise: The Highly Conserved Bacterial RNase YbeY Is Essential in , Playing a Critical Role in Virulence, Stress Regulation, and RNA Processing. PLoS Pathog 10(6): e32767. doi:10.1371/journal.ppat.1004175
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004175

Souhrn

Bacteria adapt and survive unfavorable environments by quickly changing their gene expression and physiology, for example as pathogens do during infection of host cells. Gene expression is often determined by RNA turnover, a balance between transcription and RNA decay carried out by multiple RNases. The recently identified RNase YbeY was shown in E. coli to participate in rRNA maturation and 70 S ribosome quality control, however YbeY's roles in other organisms and the extent of functional conservation is unknown. Here, we show that YbeY is an essential RNase in the pathogen Vibrio cholerae, critical for cell fitness and general stress tolerance. We demonstrate that YbeY is crucial for 16 S rRNA 3′ end maturation, assembly of functional 70 S ribosomes and ribosome quality control. Moreover, YbeY regulates virulence-associated small RNAs and its depletion leads to an overall reduction in pathogenesis, exemplified by significantly decreased biofilm formation, mouse colonization and cholera toxin production. We also show that YbeY belongs to a minimal core set of RNases essential in most representative pathogens. The multifaceted roles of YbeY in several essential cellular processes and its highly conserved function across bacterial species, suggest that YbeY could be an attractive new antimicrobial target.


Zdroje

1. ArraianoCM, AndradeJM, DominguesS, GuinoteIB, MaleckiM, et al. (2010) The critical role of RNA processing and degradation in the control of gene expression. FEMS Microbiol Rev 34: 883–923.

2. GottesmanS, StorzG (2011) Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol 3: a003798.

3. JesterBC, RombyP, LioliouE (2012) When ribonucleases come into play in pathogens: a survey of Gram-positive bacteria. Int J Microbiol 2012: 592196.

4. SilvaIJ, SaramagoM, DressaireC, DominguesS, ViegasSC, et al. (2011) Importance and key events of prokaryotic RNA decay: the ultimate fate of an RNA molecule. Wiley Interdiscip Rev RNA 2: 818–836.

5. StorzG, VogelJ, WassarmanKM (2011) Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 43: 880–891.

6. ViegasSC, ArraianoCM (2008) Regulating the regulators: how ribonucleases dictate the rules in the control of small non-coding RNAs. RNA Biol 5: 230–243.

7. NilssonPP, NaureckieneSS, UhlinBEB (1996) Mutations affecting mRNA processing and fimbrial biogenesis in the Escherichia coli pap operon. J Bacteriol 178: 683–690.

8. LawalA, JejelowoO, ChopraAK, RosenzweigJA (2011) Ribonucleases and bacterial virulence. Microb Biotechnol 4: 558–571.

9. GripenlandJ, NetterlingS, LohE, TiensuuT, Toledo-AranaA, et al. (2010) RNAs: regulators of bacterial virulence. Nat Rev Microbiol 8: 857–866.

10. BardillJP, HammerBK (2012) Non-coding sRNAs regulate virulence in the bacterial pathogen Vibrio cholerae. RNA Biol 9: 392–401.

11. NguyenA, JacqA (2014) Small RNAs in the Vibrionaceae: an ocean still to be explored. WIREs RNA 5: 381–392.

12. FaucherSP, FriedlanderG, LivnyJ, MargalitH, ShumanHA (2010) Legionella pneumophila 6 S RNA optimizes intracellular multiplication. Proc Natl Acad Sci 107: 7533–7538.

13. NovickRPR, RossHFH, ProjanSJS, KornblumJJ, KreiswirthBB, et al. (1993) Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J 12: 3967–3975.

14. DaviesBW, WalkerGC (2008) A highly conserved protein of unknown function is required by Sinorhizobium meliloti for symbiosis and environmental stress protection. J Bacteriol 190: 1118–1123.

15. GilR, SilvaFJ, PeretóJ, MoyaA (2004) Determination of the core of a minimal bacterial gene set. Microbiol Mol Biol Rev 68: 518–537.

16. DaviesBW, KöhrerC, JacobAI, SimmonsLA, ZhuJ, et al. (2010) Role of Escherichia coli YbeY, a highly conserved protein, in rRNA processing. Mol Microbiol 78: 506–518.

17. GrinwaldM, RonEZ (2013) The Escherichia coli translation-associated heat shock protein YbeY is involved in rRNA transcription antitermination. PLoS One 8: e62297.

18. JacobAI, KöhrerC, DaviesBW, RajBhandaryUL, WalkerGC (2013) Conserved bacterial RNase YbeY plays key roles in 70 S ribosome quality control and 16 S rRNA maturation. Mol Cell 49: 427–438.

19. RasoulyA, DavidovichC, RonEZ (2010) The heat shock protein YbeY is required for optimal activity of the 30 S ribosomal subunit. J Bacteriol 192: 4592–4596.

20. RasoulyA, RonEZ (2009) Interplay between the heat shock response and translation in Escherichia coli. Res Microbiol 160: 288–296.

21. PandeySP, MinesingerBK, KumarJ, WalkerGC (2011) A highly conserved protein of unknown function in Sinorhizobium meliloti affects sRNA regulation similar to Hfq. Nucleic Acids Res 39: 1–18.

22. FaruqueSM, AlbertMJ, MekalanosJJ (1998) Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol Mol Biol Rev 62: 1301–1314.

23. GriffithDC, Kelly-HopeLA, MillerMA (2006) Review of reported cholera outbreaks worldwide, 1995–2005. Am J Trop Med Hyg 75: 973–977.

24. ZuckermanJN, RomboL, FischA (2007) The true burden and risk of cholera: implications for prevention and control. Lancet Infect Dis 7: 521–530.

25. ButlerSM, CamilliA (2005) Going against the grain: chemotaxis and infection in Vibrio cholerae. Nat Rev Microbiol 3: 611–620.

26. HeidelbergJF, EisenJA, NelsonWC, ClaytonRA, GwinnML, et al. (2000) DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406: 477–483.

27. WaldorMK, MekalanosJJ (1996) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272: 1910–1914.

28. KaraolisDK, JohnsonJA, BaileyCC, BoedekerEC, KaperJB, et al. (1998) A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc Natl Acad Sci 95: 3134–3139.

29. LiZ, PanditS, DeutscherMP (1999) RNase G (CafA protein) and RNase E are both required for the 5' maturation of 16 S ribosomal RNA. EMBO J 18: 2878–2885.

30. SulthanaS, DeutscherMP (2013) Multiple exoribonucleases catalyze maturation of the 3' terminus of 16 S ribosomal RNA (rRNA). J Biol Chem 288: 12574–12579.

31. MackieGA (2013) RNase E: at the interface of bacterial RNA processing and decay. Nat Rev Microbiol 11: 45–57.

32. RasoulyA, SchonbrunM, ShenharY, RonEZ (2009) YbeY, a heat shock protein involved in translation in Escherichia coli. J Bacteriol 191: 2649–2655.

33. AkerleyBJB, RubinEJE, NovickVLV, AmayaKK, JudsonNN, et al. (2002) A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc Natl Acad Sci 99: 966–971.

34. GawronskiJD, WongSMS, GiannoukosG, WardDV, AkerleyBJ (2009) Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung. Proc Natl Acad Sci 106: 16422–16427.

35. BaldwinDN, ShepherdB, KraemerP, HallMK, SycuroLK, et al. (2007) Identification of Helicobacter pylori genes that contribute to stomach colonization. Infect Immun 75: 1005–1016.

36. CameronDE, UrbachJM, MekalanosJJ (2008) A defined transposon mutant library and its use in identifying motility genes in Vibrio cholerae. Proc Natl Acad Sci 105: 8736–8741.

37. CanalsR, XiaX-Q, FronickC, CliftonSW, AhmerBMM, et al. (2012) High-throughput comparison of gene fitness among related bacteria. BMC Genomics 13: 212.

38. ChaudhuriRR, AllenAG, OwenPJ, ShalomG, StoneK, et al. (2009) Comprehensive identification of essential Staphylococcus aureus genes using Transposon-Mediated Differential Hybridisation (TMDH). BMC Genomics 10: 291.

39. BabaT, AraT, HasegawaM, TakaiY, OkumuraY, et al. (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2: 2006.0008.

40. GerdesSY, ScholleMD, CampbellJW, BalázsiG, RavaszE, et al. (2003) Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J Bacteriol 185: 5673–5684.

41. GlassJI, Assad-GarciaN, AlperovichN, YoosephS, LewisMR, et al. (2006) Essential genes of a minimal bacterium. Proc Natl Acad Sci 103: 425–430.

42. GriffinJE, GawronskiJD, DeJesusMA, IoergerTR, AkerleyBJ, et al. (2011) High-Resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog 7: e1002251.

43. KatoJ-i, HashimotoM (2007) Construction of consecutive deletions of the Escherichia coli chromosome. Mol Syst Biol 3: 132.

44. KobayashiKK, EhrlichSDS, AlbertiniAA, AmatiGG, AndersenKKK, et al. (2003) Essential Bacillus subtilis genes. Proc Natl Acad Sci 100: 4678–4683.

45. LangridgeGC, PhanM-D, TurnerDJ, PerkinsTT, PartsL, et al. (2009) Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome Res 19: 2308–2316.

46. LiberatiNT, UrbachJM, MiyataS, LeeDG, DrenkardE, et al. (2006) An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci 103: 2833–2838.

47. SalamaNR, ShepherdB, FalkowS (2004) Global transposon mutagenesis and essential gene analysis of Helicobacter pylori. J Bacteriol 186: 7926–7935.

48. van OpijnenT, BodiKL, CamilliA (2009) Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat Methods 6: 767–772.

49. XuG, LiuB, WangF, WeiC, ZhangY, et al. (2013) High-throughput screen of essential gene modules in Mycobacterium tuberculosis: a bibliometric approach. BMC Infect Dis 13: 227.

50. ZhangYJ, IoergerTR, HuttenhowerC, LongJE, SassettiCM, et al. (2012) Global assessment of genomic regions required for growth in Mycobacterium tuberculosis. PLoS Pathog 8: e1002946.

51. DziejmanM, BalonE, BoydD, FraserCM, HeidelbergJF, et al. (2002) Comparative genomic analysis of Vibrio cholerae: genes that correlate with cholera endemic and pandemic disease. Proc Natl Acad Sci 99: 1556–1561.

52. SkorupskiK, TaylorRK (1996) Positive selection vectors for allelic exchange. Gene 169: 47–52.

53. ChaoMC, PritchardJR, ZhangYJ, RubinEJ, LivnyJ, et al. (2013) High-resolution definition of the Vibrio cholerae essential gene set with hidden Markov model-based analyses of transposon-insertion sequencing data. Nucleic Acids Res 41: 9033–9048.

54. TsaiYC, DuD, Dominguez-MalfavonL, DimastrogiovanniD, CrossJ, et al. (2012) Recognition of the 70 S ribosome and polysome by the RNA degradosome in Escherichia coli. Nucleic Acids Res 40: 10417–10431.

55. InoueK, AlsinaJ, ChenJ, InouyeM (2003) Suppression of defective ribosome assembly in a rbfA deletion mutant by overexpression of Era, an essential GTPase in Escherichia coli. . Mol Microbiol 48: 1005–1016.

56. SatoA, KobayashiG, HayashiH, YoshidaH, WadaA, et al. (2005) The GTP binding protein Obg homolog ObgE is involved in ribosome maturation. Genes Cells 10: 393–408.

57. WiremanJW, SypherdPS (1974) In vitro assembly of 30 S ribosomal particles from precursor 16 S RNA of Escherichia coli. Nature 247: 552–554.

58. VogelJ, LuisiBF (2011) Hfq and its constellation of RNA. Nat Rev Microbiol 9: 578–589.

59. DavisBM, WaldorMK (2007) RNase E-dependent processing stabilizes MicX, a Vibrio cholerae sRNA. Mol Microbiol 65: 373–385.

60. SongT, MikaF, LindmarkB, LiuZ, SchildS, et al. (2008) A new Vibrio cholerae sRNA modulates colonization and affects release of outer membrane vesicles. Mol Microbiol 70: 100–111.

61. BradleyESE, BodiKK, IsmailAMA, CamilliAA (2011) A genome-wide approach to discovery of small RNAs involved in regulation of virulence in Vibrio cholerae. PLoS Pathog 7: e1002126.

62. DaviesBW, BogardRW, YoungTS, MekalanosJJ (2012) Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for V. cholerae virulence. Cell 149: 358–370.

63. TuKC, BasslerBL (2007) Multiple small RNAs act additively to integrate sensory information and control quorum sensing in Vibrio harveyi. Genes Dev 21: 221–233.

64. EidemTM, RouxCM, DunmanPM (2012) RNA decay: a novel therapeutic target in bacteria. Wiley Interdiscip Rev RNA 3: 443–454.

65. DeutscherMP (2009) Maturation and degradation of ribosomal RNA in bacteria. Prog Mol Biol Transl Sci 85: 369–391.

66. LiangW, DeutscherMP (2013) Ribosomes regulate the stability and action of RNase R. J Biol Chem 288: 34791–34798.

67. De LayN, GottesmanS (2011) Role of polynucleotide phosphorylase in sRNA function in Escherichia coli. RNA 17: 1172–1189.

68. ChaoY, VogelJ (2010) The role of Hfq in bacterial pathogens. Curr Opin Microbiol 13: 24–33.

69. LiuJM, LivnyJ, LawrenceMS, KimballMD, WaldorMK, et al. (2009) Experimental discovery of sRNAs in Vibrio cholerae by direct cloning, 5 S/tRNA depletion and parallel sequencing. Nucleic Acids Res 37: e46–e46.

70. Toffano-NiocheC, NguyenAN, KuchlyC, OttA, GautheretD, et al. (2012) Transcriptomic profiling of the oyster pathogen Vibrio splendidus opens a window on the evolutionary dynamics of the small RNA repertoire in the Vibrio genus. RNA 18: 2201–2219.

71. LenzDH, MokKC, LilleyBN, KulkarniRV, WingreenNS, et al. (2004) The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118: 69–82.

72. AndradeJM, PobreV, MatosAM, ArraianoCM (2012) The crucial role of PNPase in the degradation of small RNAs that are not associated with Hfq. RNA 18: 844–855.

73. ValeruSP, RompikuntalPK, IshikawaT, VaitkeviciusK, SjölingA, et al. (2009) Role of melanin pigment in expression of Vibrio cholerae virulence factors. Infect Immun 77: 935–942.

74. PrakashB, VeeregowdaBM, KrishnappaG (2003) Biofilms: a survival strategy of bacteria. Curr Sci. 85.

75. FuxCA, CostertonJW, StewartPS, StoodleyP (2005) Survival strategies of infectious biofilms. Trends Microbiol 13: 34–40.

76. BinaJ, ZhuJ, DziejmanM, FaruqueS, CalderwoodS, et al. (2003) ToxR regulon of Vibrio cholerae and its expression in vibrios shed by cholera patients. Proc Natl Acad Sci 100: 2801–2806.

77. XuQ, DziejmanM, MekalanosJJ (2003) Determination of the transcriptome of Vibrio cholerae during intraintestinal growth and midexponential phase in vitro. Proc Natl Acad Sci 100: 1286–1291.

78. RutherfordST, BasslerBL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2: a012427.

79. MandinP, GottesmanS (2009) A genetic approach for finding small RNAs regulators of genes of interest identifies RybC as regulating the DpiA/DpiB two-component system. Mol Microbiol 72: 551–565.

80. SvenningsenSL, TuKC, BasslerBL (2009) Gene dosage compensation calibrates four regulatory RNAs to control Vibrio cholerae quorum sensing. EMBO J 28: 429–439.

81. ShajaniZ, SykesMT, WilliamsonJR (2011) Assembly of bacterial ribosomes. Annu Rev Biochem 80: 501–526.

82. ZhouZ, DeutscherMP (1997) An essential function for the phosphate-dependent exoribonucleases RNase PH and polynucleotide phosphorylase. J Bacteriol 179: 4391–4395.

83. PurusharthRI, MadhuriB, RayMK (2007) Exoribonuclease R in Pseudomonas syringae is essential for growth at low temperature and plays a novel role in the 3' end processing of 16 and 5 S ribosomal RNA. J Biol Chem 282: 16267–16277.

84. LuL-d, SunQ, FanX-y, ZhongY, YaoY-f, et al. (2010) Mycobacterial MazG is a novel NTP pyrophosphohydrolase involved in oxidative stress response. J Biol Chem 285: 28076–28085.

85. WangJ, SoissonSM, YoungK, ShoopW, KodaliS, et al. (2006) Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature 441: 358–361.

86. FischbachMA, WalshCT (2009) Antibiotics for emerging pathogens. Science 325: 1089–1093.

87. Morones-RamirezJR, WinklerJA, SpinaCS, CollinsJJ (2013) Silver enhances antibiotic activity against gram-negative bacteria. Sci Transl Med 5: 190ra181.

88. ConlonBP, NakayasuES, FleckLE, LaFleurMD, IsabellaVM, et al. (2013) Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature 503: 365–370.

89. GuzmanLML, BelinDD, CarsonMJM, BeckwithJJ (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177: 4121–4130.

90. Sambrook J, Russell DW (2001) Molecular cloning. Cold Spring Harbor, NY: Cold Spring Laboratory Press. 2344 p.

91. WachsmuthIK, EvinsGM, FieldsPI, OlsvikO, PopovicT, et al. (1993) The molecular epidemiology of cholera in Latin America. J Infect Dis 167: 621–626.

92. CasadabanMJ, CohenSN (1979) Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc Natl Acad Sci 76: 4530–4533.

93. EtchegarayJP, InouyeM (1999) Translational enhancement by an element downstream of the initiation codon in Escherichia coli. J Biol Chem 274: 10079–10085.

94. WachiM, UmitsukiG, ShimizuM, TakadaA, NagaiK (1999) Escherichia coli cafA gene encodes a novel RNase, designated as RNase G, involved in processing of the 5' end of 16 S rRNA. Biochem Biophys Res Commun 259: 483–488.

95. HeidCA, StevensJ, LivakKJ, WilliamsPM (1996) Real time quantitative PCR. Genome Res 6: 986–994.

96. KöhrerC, RajbhandaryUL (2008) The many applications of acid urea polyacrylamide gel electrophoresis to studies of tRNAs and aminoacyl-tRNA synthetases. Methods 44: 129–138.

97. LiZ, DeutscherMP (1995) The tRNA processing enzyme RNase T is essential for maturation of 5 S RNA. Proc Natl Acad Sci 92: 6883–6886.

98. LiZ, PanditS, DeutscherMP (1999) Maturation of 23 S ribosomal RNA requires the exoribonuclease RNase T. RNA 5: 139–146.

99. NishiharaKK, KanemoriMM, KitagawaMM, YanagiHH, YuraTT (1998) Chaperone coexpression plasmids: differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli. Appl Environ Microbiol 64: 1694–1699.

100. DaviesBW, BogardRW, DupesNM, GerstenfeldTAI, SimmonsLA, et al. (2011) DNA damage and reactive nitrogen species are barriers to Vibrio cholerae colonization of the infant mouse intestine. PLoS Pathog 7: e1001295.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#