#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Functional Characterization of a Novel Family of Acetylcholine-Gated Chloride Channels in


Schistosomiasis is a widespread, chronic disease affecting over 200 million people in developing countries. Currently, there is no vaccine available and treatment depends on the use of a single drug, praziquantel. Reports of reduced praziquantel efficacy, as well as its ineffectiveness against larval schistosomula highlight the need to develop new therapeutics. Interference with schistosome motor function provides a promising therapeutic target due to its importance in a variety of essential biological processes. The cholinergic system has been shown previously to be a major modulator of parasite motility. In this study, we have described a novel clade of schistosome acetylcholine-gated chloride channels (SmACCs) that act as inhibitory modulators of this pathway. Our results suggest that these receptors are absent in the human host and indirectly modulate inhibitory neuromuscular responses, making them an attractive drug-target. We have also validated a new functional assay to characterize these receptors, which may be modified for future use as a high-throughput drug screening method for parasite chloride channels.


Vyšlo v časopise: Functional Characterization of a Novel Family of Acetylcholine-Gated Chloride Channels in. PLoS Pathog 10(6): e32767. doi:10.1371/journal.ppat.1004181
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004181

Souhrn

Schistosomiasis is a widespread, chronic disease affecting over 200 million people in developing countries. Currently, there is no vaccine available and treatment depends on the use of a single drug, praziquantel. Reports of reduced praziquantel efficacy, as well as its ineffectiveness against larval schistosomula highlight the need to develop new therapeutics. Interference with schistosome motor function provides a promising therapeutic target due to its importance in a variety of essential biological processes. The cholinergic system has been shown previously to be a major modulator of parasite motility. In this study, we have described a novel clade of schistosome acetylcholine-gated chloride channels (SmACCs) that act as inhibitory modulators of this pathway. Our results suggest that these receptors are absent in the human host and indirectly modulate inhibitory neuromuscular responses, making them an attractive drug-target. We have also validated a new functional assay to characterize these receptors, which may be modified for future use as a high-throughput drug screening method for parasite chloride channels.


Zdroje

1. GryseelsB, PolmanK, ClerinxJ, KestensL (2006) Human Schistosomiasis. Lancet 368(9541): 1106–1118.

2. DoenhoffMJ, HaganP, CioliD, SouthgateV, Pica-MattocciaL, et al. (2009) Praziquantel: its use in control of schistosomiasis in sub-Saharan Africa and current research needs. Parasitology 136(13): 1825–35.

3. MelmanSD, SteinauerML, CunninghamC, KubatkoLS, MwangiIN, et al. (2009) Reduced Susceptibility to Praziquantel among Naturally Occurring Kenyan Isolates of Schistosoma mansoni. PLoS Negl Trop Dis 3(8): e504.

4. SabahAA, FletcherC, WebbeG, DoenhoffJ (1986) Schistosoma mansoni: chemotherapy of infections of different ages. Exp Parasitol 61: 294–303.

5. RobertsonAP, MartinRJ (2007) Ion-channels on parasite muscle: pharmacology and physiology. Invert Neurosci 7(4): 209–17.

6. CrabtreeJE, WilsonRA (1980) Schistosoma mansoni: a scanning electron microscope study of the developing schistosomulum. Parasitology 81(Pt 3): 553–64.

7. MauleAG, DayTA, ChappellCH (2005) Parasite neuromusculature and its utility as a drug target. Parasitology 131: S1–S2.

8. KaminskyR, GauvryN, Schorderet WeberS, SkripskyT, BouvierJ, et al. (2008) Identification of the amino-acetonitrile derivative monepantel (AAD 1566) as a new anthelminthic drug development candidate. Parasitol Res 103(4): 931–939.

9. BuedingE, LiuCL, RogersSH (1972) Inhibition by metrifonate and dichlorvos of cholinesterases in schistosomes. Br J Pharmacol 46(3): 480–7.

10. AlbuquerqueEX, PereiraEF, AlkondonM, RogersSW (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Res 89(1): 73–120.

11. van NieropP, KeramidasA, BertrandS, van MinnenJ, GouwenbergY, et al. (2005) Identification of Molluscan Nicotinic Acetylcholine Receptor (nAChR) Subunits Involved in Formation of Cation- and Anion-Selective nAChRs. J Neurosci 25(46): 10617–10626.

12. PutrenkoI, ZakikhaniM, DentJA (2005) A Family of Acetylcholine-gated Chloride Channel Subunits in Caenorhabditis elegans. J Biol Chem 280: 6392–6398.

13. BeechRN, CallananMK, RaoVTS, DaweGB, ForresterSG (2013) Characterization of Cys-loop receptor genes involved in inhibitory amine neurotransmission in parasitic and free-living nematodes. Parasitology Int 62: 599–605.

14. KeramidasA, MoorhouseAJ, PierceKD, SchofieldPR, BarryPH (2002) Cation-selective Mutations in the M2 Domain of the Inhibitory Glycine Receptor Channel Reveal Determinants of Ion-Charge Selectivity. J Gen Physiol 119: 393–410.

15. BarkerLR, BuedingE, TimmsAR (1966) The possible role of acetylcholine in Schistosoma mansoni. Brit J Pharmacol 26: 656–665.

16. WilsonCVLC, SchillerEL (1969) The neuroanatomy of Hymenolepis dimimuta and H. nana. J Parasitol 55(2): 261–70.

17. DayTA, ChenGZ, MillerC, TianM, BennettJL, PaxRA (1996) Cholinergic inhibition of muscle fibers isolated from Schistosoma mansoni (Trematoda: Digenea). Parasitology 113 (Pt. 1): 55–61.

18. BerrimanM, HaasBJ, LoVerdePT, WilsonRA, DillonGP, et al. (2009) The genome of the blood fluke Schistosoma mansoni. Nature 460: 352–358.

19. ProtasioAV, TsaiIJ, BabbageA, NicholS, HuntM (2012) A systematically improved high quality genome and transcriptome of the human blood fluke Schistosoma mansoni. PLoS Negl Trop Dis 6(1): e1455.

20. BehmCA, BendigMM, McCarterJP, SluderAE (2005) RNAi-based discovery and validation of new drug targets in filarial nematodes. Trends Parasitol 21(3): 97–100.

21. BoyleJP, WuXJ, ShoemakerCB, YoshinoTP (2003) Using RNA interference to manipulate endogenous gene expression in Schistosoma mansoni sporocysts. Mol Biochem Parasitol 128(2): 205–15.

22. Kreutz-PetersonG, RadwanskaM, NdeguaD, ShoemakerCK, SkellyPJ (2007) Optimizing gene suppression in schistosomes using RNA interference. Mol Biochem Parasitol 153(2): 194–202.

23. ReddienPW, BermangeAL, MurfittKJ, JenningsJR, Sánchez AlvaradoA (2005) Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria. Dev Cell 8(5): 635–49.

24. McVeighP, MairGR, NovozhilovaE, DayA, ZamanianM, MarksNJ, KimberMJ, DayTA, MauleAG (2011) Schistosome I/Lamides—a new family of bioactive helminth neuropeptides. Int J Parasitol 41(8): 905–13.

25. PatockaN, RibeiroP (2013) The functional role of a serotonin transporter in Schistosoma mansoni elucidated through immunolocalization and RNA interference (RNAi). Mol Biochem Parasitol 187: 32–42.

26. LewisF (2001) Schistosomiasis. Current Protocols in Immunology 28: 19.1.1–19.1.28.

27. LarkinMA, BlackshieldsG, BrownNP, ChennaR, McGettiganPA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21): 2947–2948.

28. FelsensteinJ (1989) PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics 5: 164–166.

29. Morariu VI, Srinivasan BV, Raykar VC, Duraiswami R, Davis LS (2008) Automatic online tuning for fast Gaussian summation. Advances in Neural Information Processing Systems (NIPS) 2007. Available: http://books.nips.cc/papers/files/nips21/NIPS2008_0257.pdf.

30. Rychlik W (2007) OLIGO 7 Primer Analysis Software. In: Yuryev A, editor. Methods in Molecular Biology Vol. 402: PCR Primer Design. Totowa: Humana Press. pp 35–59.

31. El-ShehabiF, TamanA, MoaliLS, El-SakkaryN, RibeiroP (2012) A novel G protein-coupled receptor of Schistosoma mansoni (SmGPR-3) is activated by dopamine and is widely expressed in the nervous system. PLoS Negl Trop Dis 6(2): e1523.

32. GoldD (1997) Assessment of the viability of Schistosoma mansoni schistosomula by comparative uptake of various vital dyes. Parasitol Res 83: 163–169.

33. LivakKJ, SchmittgenTD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(t)) Method. Methods 25(4): 402–8.

34. MairGR, MauleAG, DayTA, HaltonDW (2000) A confocal microscopical study of the musculature of adult Schistosoma mansoni. Parasitology 121(Pt 2): 163–170.

35. TamanA, RibeiroP (2009) Investigation of a dopamine receptor in Schistosoma mansoni: Functional studies and immunolocalization. Mol Biochem Parasitol 168: 24–33.

36. CollinsJJIII, KingRS, CogswellA, WilliamsDL, NewmarkPA (2011) An Atlas for Schistosoma mansoni Organs and Life-Cycle Stages Using Cell Type-Specific Markers and Confocal Microscopy. PLoS Negl Trop Dis 5(3): e1009.

37. De La FuenteR, NamkungW, MillsA, VerkmanAS (2008) Small-molecule screen identifies inhibitors of a human intestinal calcium-activated chloride channel. Mol Pharmacol 73: 758–768.

38. GaliettaLJ, HaggiePM, VerkmanAS (2001) Green fluorescent protein-based halide indicators with improved chloride and iodide affinities. FEBS Lett 499: 220–224.

39. JohanssonT, NorrisT, Peilot-SjögrenH (2013) Yellow Fluorescent Protein-Based Assay to Measure GABAA Channel Activation and Allosteric Modulation in CHO-K1 Cells. PLoS ONE 8(3): e59429.

40. VerkmanAS, GaliettaLJ (2009) Chloride channels as drug targets. Nat Rev Drug Discov 8(2): 153–71.

41. KrugerW, GilbertD, HawthorneR, HryciwDH, FringsS, Poronnik P LynchJW (2005) A yellow fluorescent protein-based assay for high-throughput screening of glycine and GABAA receptor chloride channels. Neurosci Lett 380(3): 340–5.

42. XieJ, DernoviciS, RibeiroP (2005) Mutagenesis analysis of the serotonin 5-HT2C receptor and a Caenorhabditis elegans 5HT2 homologue: Conserved residues of helix 4 and 7 contribute to agonist-dependent activation of 5HT2 receptors. J Neurochem 92: 375–387.

43. NabhanJ, RibeiroP (2006) The 19S proteasomal subunit POH1 contributes to the regulation of c-Jun ubiquitination, stability and subcellular localization. J Biol Chem 281: 16099–16107.

44. ThompsonAJ, LesterHA, LummisSCR (2010) The Structural Basis of Function in Cys-Loop Receptors. Q Rev Biophys 43(4): 449–99.

45. GalziJ-L, Devillers-ThieryA, HussyN, BertrandS, ChangeuxJ-P, BertrandD (1992) Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic. Nature 359: 500–505.

46. CorringerP-J, BertrandS, GalziJ-L, Devillers-ThieryA, ChangeuxJ-P, BertrandD (1999) Mutational analysis of the charge selectivity filter of the α7 nicotinic acetylcholine receptor. Neuron 22: 831–843.

47. KarlinA (2002) Emerging structure of the nicotinic acetylcholine receptors. Nature Rev (Neurosc) 3: 102–114.

48. KaoPN, KarlinA (1996) Acetylcholine receptor binding site contains a disulfide cross-link between adjacent half-cystinyl residues. J Biol Chem 261(18): 8085–8088.

49. RibeiroP, El-ShehabiF, PatockaN (2005) Classical transmitters and their receptors in flatworms. Parasitology (131): S19–S40.

50. HaltonDW, GustaffsonMKS (1996) Functional morphology of the platyhelminth nervous system. Parasitology (113): S47–S72.

51. NishimuraK, KitamuraY, TaniguchiT, AgataK (2010) Analysis of motor function modulated by cholinergic neurons in planarian Dugesia japonica. Neurosci 168(1): 18–30.

52. Reuter M, Gustafsson MKS (1995) The flatworm nervous system: Pattern and phylogeny. In The nervous systems of invertebrates: An evolutionary and comparative approach (Breidbach O, Kutsch W, eds) pp. 25–59.

53. WalkerRJ, FranksCJ, PembertonD, RogersC, Holden-DyeL (2000) Physiological and pharmacological studies on nematodes. Acta Biol Hung 51(2-4): 379–94.

54. ButarelliFR, PontieriFE, MargottaV, PalladiniG (2000) Acetylcholine/dopamine interaction in planaria. Comp Biochem Physiol C Toxicol Pharmacol 125(2): 225–31.

55. HolmesFP, FairweatherI (1984) Fasciola hepatica: the effects of neuropharmacological agents in in vitro motility. Exp Parasitol 58: 194–208.

56. WilsonGG, PascualJM, BrooijmansN, MurrayD, KarlinA (2000) The Intrinsic Electrostatic Potential and the Intermediate Ring of Charge in the Acetylcholine Receptor Channel. J Gen Physiol 115: 93–106.

57. HuangY, ChenW, WangX, LiuH, ChenY, et al. (2013) The carcinogenic liver fluke, Clonorchis sinensis: new assembly, reannotation and analysis of the genome and characterization of tissue transcriptomes. PLOS One 8(1): e54732.

58. BarikJ, WonnacottS (2006) Indirect Modulation by _7 Nicotinic Acetylcholine Receptors of Noradrenaline Release in Rat Hippocampal Slices: Interaction with Glutamate and GABA Systems and Effect of Nicotine Withdrawal. Molec Pharmacol 69(2): 618–628.

59. AkasuT, OhtaY, KoketsuK (1984) Neuropeptides facilitate the desensitization of nicotinic acetylcholine-receptor in frog skeletal muscle endplate. Brain Res 290(2): 342–347.

60. Di AngelantonioS, GiniatullinR, CostaV, SokolovaE, NistriA (2003) Modulation of neuronal nicotinic receptor function by the neuropeptides CGRP and substance P on autonomic nerve cells. Br J Pharmacol 139(6): 1061–73.

61. HaltonDW, MauleAG (2004) Flatworm nerve–muscle: structural and functional analysis. Can J Zool 82(2): 316–333.

62. CamachoM, AlsfordS, JonesA, AgnewA (1995) Nicotinic acetylcholine receptors on the surface of the blood fluke Schistosoma. Mol Biochem Parasitol 71: 127–1.

63. CamachoM, AgnewA (1995) Schistosoma: rate of glucose transport is altered by acetylcholine interaction with tegumental acetylcholine receptors and acetylcholinesterase. Exp Parasitol 81: 584–591.

64. KrugerFJ, Hamilton-AttwellVL, TiedtL, Du PreezL (1986) Further observations on an intratubercular sensory receptor of Schistosoma mattheei.. Onderstepoort J Vet Res 53(4): 239–40.

65. BentleyGN, JonesAK, Oliveros ParraWG, AgnewA (2004) ShAR1alpha and ShAR1beta: novel putative nicotinic acetylcholine receptor subunits from the platyhelminth blood fluke Schistosoma. Gene 329: 27–38.

66. HamdanFF, MousaA, RibeiroP (2002) Codon optimization improves heterologous expression of a Schistosoma mansoni cDNA in HEK-293 cells. Parasitol Res 88(6): 583–6.

67. García-GuzmánM, SalaF, SalaS, Campos-CaroA, CriadoM (1994) Role of two acetylcholine receptor subunit domains in homomer formation and intersubunit recognition, as revealed by alpha 3 and alpha 7 subunit chimeras. Biochem 33(50): 15198–203.

68. RaymondV, MonganNP, SattelleDB (2000) Anthelmintic actions on homomer-forming nicotinic acetylcholine receptor subunits: chicken alpha7 and ACR-16 from the nematode Caenorhabditis elegans. Neurosci 101(3): 785–91.

69. Le NovèreN, CorringerPJ, ChangeuxJP (2002) The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences. J Neurobiol 53(4): 447–56.

70. PapkeRL, DwoskinLP (2007) Crooks (2007) The pharmacological activity of nicotine and nornicotine on nAChRs subtypes: relevance to nicotine dependence and drug discovery. J Neurochem 101(1): 160–7.

71. WilliamsonSM, RobertsonAP, BrownL, WilliamsT, WoodsDJ, MartinRJ, SattelleDB, WolstenholmeAJ (2009) The nicotinic acetylcholine receptors of the parasitic nematode Ascaris suum: formation of two distinct drug targets by varying the relative expression levels of two subunits. PLoS Pathog 5(7): e1000517.

72. ColquhounL, Holden-DyeL, WalkerRJ (1991) The pharmacology of cholinoceptors on the somatic muscle cells of the parasitic nematode Ascaris suum. J Exp Biol 158: 509–530.

73. TrivediS, LiuJ, RuifengL, BostwickR (2010) Advances in functional assays for high-throughput screening of ion channels targets. Expert Opin Drug Discov 5(10): 995–1006.

74. PatockaN, SharmaN, RashidM, RibeiroP (2014) Serotonin Signaling in Schistosoma mansoni: A Serotonin–Activated G Protein-Coupled Receptor Controls Parasite Movement. PLoS Pathog 10(1): e1003878.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#