-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
Preclinical Detection of Variant CJD and BSE Prions in Blood
Variant Creutzfeldt Jakob Disease (vCJD) cases were identified in patients who received blood products that had been prepared from donors who later developed the disease. The blood borne transmission of vCJD is a major concern for blood transfusion banks, plasma derived products manufacturers and public health authorities. A vCJD blood screening test would represent an ideal solution for identifying donors/blood donations that might be at risk. In this study, we describe a blood assay which is based on the in vitro amplification of vCJD agent by Protein Misfolding Cyclic Amplification (PMCA). In vCJD animal models (sheep and primate), the assay enabled the identification of infected individuals in a very early stage of the asymptomatic incubation phase. We also provide evidence of the high specificity and the high analytical sensitivity of this assay using blood samples from vCJD affected and healthy patients.
Vyšlo v časopise: Preclinical Detection of Variant CJD and BSE Prions in Blood. PLoS Pathog 10(6): e32767. doi:10.1371/journal.ppat.1004202
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004202Souhrn
Variant Creutzfeldt Jakob Disease (vCJD) cases were identified in patients who received blood products that had been prepared from donors who later developed the disease. The blood borne transmission of vCJD is a major concern for blood transfusion banks, plasma derived products manufacturers and public health authorities. A vCJD blood screening test would represent an ideal solution for identifying donors/blood donations that might be at risk. In this study, we describe a blood assay which is based on the in vitro amplification of vCJD agent by Protein Misfolding Cyclic Amplification (PMCA). In vCJD animal models (sheep and primate), the assay enabled the identification of infected individuals in a very early stage of the asymptomatic incubation phase. We also provide evidence of the high specificity and the high analytical sensitivity of this assay using blood samples from vCJD affected and healthy patients.
Zdroje
1. BruceME, WillRG, IronsideJW, McConnellI, DrummondD, et al. (1997) Transmissions to mice indicate that ‘new variant’ CJD is caused by the BSE agent [see comments]. Nature 389 : 498–501.
2. HerzogC, RiviereJ, Lescoutra-EtchegarayN, CharbonnierA, LeblancV, et al. (2005) PrPTSE distribution in a primate model of variant, sporadic, and iatrogenic Creutzfeldt-Jakob disease. J Virol 79 : 14339–14345.
3. HoustonF, FosterJD, ChongA, HunterN, BostockCJ (2000) Transmission of BSE by blood transfusion in sheep. Lancet 356 : 999–1000.
4. LlewelynCA, HewittPE, KnightRS, AmarK, CousensS, et al. (2004) Possible transmission of variant Creutzfeldt-Jakob disease by blood transfusion. Lancet 363 : 417–421.
5. PedenAH, HeadMW, RitchieDL, BellJE, IronsideJW (2004) Preclinical vCJD after blood transfusion in a PRNP codon 129 heterozygous patient. Lancet 364 : 527–529.
6. PedenA, McCardleL, HeadMW, LoveS, WardHJ, et al. (2010) Variant CJD infection in the spleen of a neurologically asymptomatic UK adult patient with haemophilia. Haemophilia 16 : 296–304.
7. GarskeT, GhaniAC (2010) Uncertainty in the tail of the variant Creutzfeldt-Jakob disease epidemic in the UK. PLoS One 5: e15626.
8. HiltonDA, GhaniAC, ConyersL, EdwardsP, McCardleL, et al. (2004) Prevalence of lymphoreticular prion protein accumulation in UK tissue samples. J Pathol 203 : 733–739.
9. GillON, SpencerY, Richard-LoendtA, KellyC, DabaghianR, et al. (2013) Prevalent abnormal prion protein in human appendixes after bovine spongiform encephalopathy epizootic: large scale survey. BMJ 347: f5675.
10. BeringueV, HerzogL, JaumainE, ReineF, SibilleP, et al. (2012) Facilitated cross-species transmission of prions in extraneural tissue. Science 335 : 472–475.
11. CooperJK, LadhaniK, MinorP (2012) Comparison of candidate vCJD in vitro diagnostic assays using identical sample sets. Vox Sang 102 : 100–109.
12. DouetJY, ZafarS, Perret-LiaudetA, LacrouxC, LuganS, et al. (2014) Detection of infectivity in blood of persons with variant and sporadic Creutzfeldt-Jakob disease. Emerg Infect Dis 20 : 114–117.
13. BrownP, RohwerRG, DunstanBC, MacAuleyC, GajdusekDC, et al. (1998) The distribution of infectivity in blood components and plasma derivatives in experimental models of transmissible spongiform encephalopathy. Transfusion 38 : 810–816.
14. LacrouxC, ViletteD, Fernandez-BorgesN, LitaiseC, LuganS, et al. (2012) Prionemia and leuco-platelet associated infectivity in sheep TSE models. J Virol 86 (4) 2056–66.
15. MathiasonCK, Hayes-KlugJ, HaysSA, PowersJ, OsbornDA, et al. (2010) B cells and platelets harbor prion infectivity in the blood of deer infected with chronic wasting disease. J Virol 84 : 5097–5107.
16. McCutcheonS, Alejo BlancoAR, HoustonEF, de WolfC, TanBC, et al. (2011) All Clinically-Relevant Blood Components Transmit Prion Disease following a Single Blood Transfusion: A Sheep Model of vCJD. PLoS One 6: e23169.
17. SaborioGP, PermanneB, SotoC (2001) Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411 : 810–813.
18. CastillaJ, SaaP, SotoC (2005) Detection of prions in blood. Nat Med 11 : 982–985.
19. ThorneL, TerryLA (2008) In vitro amplification of PrPSc derived from the brain and blood of sheep infected with scrapie. J Gen Virol 89 : 3177–3184.
20. JonesM, PedenAH, YullH, WightD, BishopMT, et al. (2009) Human platelets as a substrate source for the in vitro amplification of the abnormal prion protein (PrP) associated with variant Creutzfeldt-Jakob disease. Transfusion 49 : 376–384.
21. JonesM, PedenAH, ProwseCV, GronerA, MansonJC, et al. (2007) In vitro amplification and detection of variant Creutzfeldt-Jakob disease PrPSc. J Pathol 213 : 21–26.
22. SimmonsHA, SimmonsMM, SpencerYI, ChaplinMJ, PoveyG, et al. (2009) Atypical scrapie in sheep from a UK research flock which is free from classical scrapie. BMC Vet Res 5 : 8.
23. LacrouxC, CorbiereF, TabouretG, LuganS, CostesP, et al. (2007) Dynamics and genetics of PrPSc placental accumulation in sheep. J Gen Virol 88 : 1056–1061.
24. MorenoCR, Moazami-GoudarziK, LaurentP, CazeauG, AndreolettiO, et al. (2007) Which PrP haplotypes in a French sheep population are the most susceptible to atypical scrapie? Arch Virol 152 : 1229–1232.
25. ComoyEEC, JaffreN, MikolJ, DurandV, LuccantoniS, et al. (2013) Contaminated Blood Products Induce an Atypical Prion Disease in Primates in the Absence of Detectable Abnormal Prion Protein. Vox Sanguinis 105 : 198–198.
26. EdgeworthJA, FarmerM, SiciliaA, TavaresP, BeckJ, et al. (2011) Detection of prion infection in variant Creutzfeldt-Jakob disease: a blood-based assay. Lancet 377 : 487–493.
27. Uro-CosteE, CassardH, SimonS, LuganS, BilheudeJM, et al. (2008) Beyond PrP res type 1/type 2 dichotomy in Creutzfeldt-Jakob disease. PLoS Pathog 4: e1000029.
28. CastillaJ, Gutierrez AdanA, BrunA, PintadoB, RamirezMA, et al. (2003) Early detection of PrPres in BSE-infected bovine PrP transgenic mice. Arch Virol 148 : 677–691.
29. Le DurA, BeringueV, AndreolettiO, ReineF, LaiTL, et al. (2005) A newly identified type of scrapie agent can naturally infect sheep with resistant PrP genotypes. Proc Natl Acad Sci U S A 102 : 16031–16036.
30. WeissmannC, FischerM, RaeberA, BuelerH, SailerA, et al. (1998) The use of transgenic mice in the investigation of transmissible spongiform encephalopathies. Rev Sci Tech 17 : 278–290.
31. BeringueV, HerzogL, ReineF, Le DurA, CasaloneC, et al. (2008) Transmission of atypical bovine prions to mice transgenic for human prion protein. Emerg Infect Dis 14 : 1898–1901.
32. FischerM, RulickeT, RaeberA, SailerA, MoserM, et al. (1996) Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. Embo J 15 : 1255–1264.
33. KupferL, EidenM, BuschmannA, GroschupMH (2007) Amino acid sequence and prion strain specific effects on the in vitro and in vivo convertibility of ovine/murine and bovine/murine prion protein chimeras. Biochim Biophys Acta 1772 : 704–713.
34. GroschupMH, BuschmannA (2008) Rodent models for prion diseases. Vet Res 39 : 32.
35. AndreolettiO, OrgeL, BenestadSL, BeringueV, LitaiseC, et al. (2011) Atypical/Nor98 scrapie infectivity in sheep peripheral tissues. PLoS Pathog 7: e1001285.
36. EspinosaJC, AndreolettiO, CastillaJ, HervaME, MoralesM, et al. (2007) Sheep-passaged bovine spongiform encephalopathy agent exhibits altered pathobiological properties in bovine-PrP transgenic mice. J Virol 81 : 835–843.
37. EspinosaJC, HervaME, AndreolettiO, PadillaD, LacrouxC, et al. (2009) Transgenic mice expressing porcine prion protein resistant to classical scrapie but susceptible to sheep bovine spongiform encephalopathy and atypical scrapie. Emerg Infect Dis 15 : 1214–1221.
38. FeraudetC, MorelN, SimonS, VollandH, FrobertY, et al. (2005) Screening of 145 anti-PrP monoclonal antibodies for their capacity to inhibit PrPSc replication in infected cells. J Biol Chem 280 : 11247–11258.
39. BaronTG, BiacabeAG, BencsikA, LangeveldJP (2006) Transmission of new bovine prion to mice. Emerg Infect Dis 12 : 1125–1128.
40. KociskoDA, ComeJH, PriolaSA, ChesebroB, RaymondGJ, et al. (1994) Cell-free formation of protease-resistant prion protein. Nature 370 : 471–474.
41. BossersA, BeltP, RaymondGJ, CaugheyB, de VriesR, et al. (1997) Scrapie susceptibility-linked polymorphisms modulate the in vitro conversion of sheep prion protein to protease-resistant forms. Proc Natl Acad Sci U S A 94 : 4931–4936.
42. BossersA, de VriesR, SmitsMA (2000) Susceptibility of sheep for scrapie as assessed by in vitro conversion of nine naturally occurring variants of PrP. J Virol 74 : 1407–1414.
43. HoriuchiM, PriolaSA, ChabryJ, CaugheyB (2000) Interactions between heterologous forms of prion protein: binding, inhibition of conversion, and species barriers. Proc Natl Acad Sci U S A 97 : 5836–5841.
44. RaymondGJ, BossersA, RaymondLD, O'RourkeKI, McHollandLE, et al. (2000) Evidence of a molecular barrier limiting susceptibility of humans, cattle and sheep to chronic wasting disease. Embo J 19 : 4425–4430.
45. RaymondGJ, HopeJ, KociskoDA, PriolaSA, RaymondLD, et al. (1997) Molecular assessment of the potential transmissibilities of BSE and scrapie to humans. Nature 388 : 285–288.
46. PanzaG, LuersL, StohrJ, Nagel-StegerL, WeissJ, et al. (2010) Molecular interactions between prions as seeds and recombinant prion proteins as substrates resemble the biological interspecies barrier in vitro. PLoS One 5: e14283.
47. CollingeJ, ClarkeAR (2007) A general model of prion strains and their pathogenicity. Science 318 : 930–936.
48. BarriaMA, IronsideJW, HeadMW (2014) Exploring the zoonotic potential of animal prion diseases: In vivo and in vitro approaches. Prion 8 [epub ahead of print].
49. CastillaJ, MoralesR, SaaP, BarriaM, GambettiP, et al. (2008) Cell-free propagation of prion strains. Embo J 27 : 2557–2566.
50. GreenKM, CastillaJ, SewardTS, NapierDL, JewellJE, et al. (2008) Accelerated high fidelity prion amplification within and across prion species barriers. PLoS Pathog 4: e1000139.
51. PadillaD, BeringueV, EspinosaJC, AndreolettiO, JaumainE, et al. (2011) Sheep and goat BSE propagate more efficiently than cattle BSE in human PrP transgenic mice. PLoS Pathog 7: e1001319.
52. ArsacJN, BetempsD, MorignatE, FeraudetC, BencsikA, et al. (2009) Transmissibility of atypical scrapie in ovine transgenic mice: major effects of host prion protein expression and donor prion genotype. PLoS One 4: e7300.
53. CordierC, BencsikA, PhilippeS, BetempsD, RonzonF, et al. (2006) Transmission and characterization of bovine spongiform encephalopathy sources in two ovine transgenic mouse lines (TgOvPrP4 and TgOvPrP59). J Gen Virol 87 : 3763–3771.
54. BeringueV, AndreolettiO, Le DurA, EssalmaniR, VilotteJL, et al. (2007) A bovine prion acquires an epidemic bovine spongiform encephalopathy strain-like phenotype on interspecies transmission. J Neurosci 27 : 6965–6971.
55. JacksonGS, Burk-RafelJ, EdgeworthJA, SiciliaA, AbdilahiS, et al. (2014) A highly specific blood test for vCJD. Blood 123 : 452–453.
56. JacksonGS, Burk-RafelJ, EdgeworthJA, SiciliaA, AbdilahiS, et al. (2014) Population Screening for Variant Creutzfeldt-Jakob Disease Using a Novel Blood Test: Diagnostic Accuracy and Feasibility Study. JAMA Neurol 71 (4) 421–8.
57. MeadS, WadsworthJD, PorterMC, LinehanJM, PietkiewiczW, et al. (2014) Variant creutzfeldt-jakob disease with extremely low lymphoreticular deposition of prion protein. JAMA Neurol 71 : 340–343.
58. VamvakasEC (2011) Universal white blood cell reduction in Europe: has transmission of variant Creutzfeldt-Jakob disease been prevented? Transfus Med Rev 25 : 133–144.
59. CossedduGM, NonnoR, VaccariG, BucalossiC, Fernandez-BorgesN, et al. (2011) Ultra-efficient PrP(Sc) amplification highlights potentialities and pitfalls of PMCA technology. PLoS Pathog 7: e1002370.
60. MoudjouM, SibilleP, FichetG, ReineF, ChapuisJ, et al. (2013) Highly infectious prions generated by a single round of microplate-based protein misfolding cyclic amplification. MBio 5: e00829–00813.
61. MaysCE, YeomJ, KangHE, BianJ, KhaychukV, et al. (2011) In vitro amplification of misfolded prion protein using lysate of cultured cells. PLoS One 6: e18047.
62. AtarashiR, WilhamJM, ChristensenL, HughsonAG, MooreRA, et al. (2008) Simplified ultrasensitive prion detection by recombinant PrP conversion with shaking. Nat Methods 5 : 211–212.
63. OrruCD, WilhamJM, VascellariS, HughsonAG, CaugheyB (2012) New generation QuIC assays for prion seeding activity. Prion 6 : 147–52.
64. BessenRA, ShearinH, MartinkaS, BoharskiR, LoweD, et al. (2010) Prion shedding from olfactory neurons into nasal secretions. PLoS Pathog 6: e1000837.
65. PedenAH, McGuireLI, ApplefordNE, MallinsonG, WilhamJM, et al. (2012) Sensitive and specific detection of sporadic Creutzfeldt-Jakob disease brain prion protein using real-time quaking-induced conversion. J Gen Virol 93 : 438–449.
66. OrruCD, WilhamJM, RaymondLD, KuhnF, SchroederB, et al. (2011) Prion disease blood test using immunoprecipitation and improved quaking-induced conversion. MBio 2: e00078–00011.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium
Článek Recruitment of RED-SMU1 Complex by Influenza A Virus RNA Polymerase to Control Viral mRNA SplicingČlánek Systematic Phenotyping of a Large-Scale Deletion Collection Reveals Novel Antifungal Tolerance GenesČlánek The Contribution of Social Behaviour to the Transmission of Influenza A in a Human Population
Článok vyšiel v časopisePLOS Pathogens
Najčítanejšie tento týždeň
2014 Číslo 6- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
-
Všetky články tohto čísla
- Fungal Nail Infections (Onychomycosis): A Never-Ending Story?
- BdlA, DipA and Induced Dispersion Contribute to Acute Virulence and Chronic Persistence of
- Morphotype Transition and Sexual Reproduction Are Genetically Associated in a Ubiquitous Environmental Pathogen
- A Nucleic-Acid Hydrolyzing Single Chain Antibody Confers Resistance to DNA Virus Infection in HeLa Cells and C57BL/6 Mice
- HopW1 from Disrupts the Actin Cytoskeleton to Promote Virulence in Arabidopsis
- Ly6C Monocytes Become Alternatively Activated Macrophages in Schistosome Granulomas with Help from CD4+ Cells
- Recruitment of RED-SMU1 Complex by Influenza A Virus RNA Polymerase to Control Viral mRNA Splicing
- Contribution of Specific Residues of the β-Solenoid Fold to HET-s Prion Function, Amyloid Structure and Stability
- Antibody Responses to : Role in Pathogenesis and Diagnosis of Encephalitis?
- Discovery of a Novel Compound with Anti-Venezuelan Equine Encephalitis Virus Activity That Targets the Nonstructural Protein 2
- Activation of Focal Adhesion Kinase by Suppresses Autophagy via an Akt/mTOR Signaling Pathway and Promotes Bacterial Survival in Macrophages
- Crossing the Interspecies Barrier: Opening the Door to Zoonotic Pathogens
- Catching Fire: , Macrophages, and Pyroptosis
- IscR Is Essential for Type III Secretion and Virulence
- Selective Chemical Inhibition of Quorum Sensing in Promotes Host Defense with Minimal Impact on Resistance
- The Glycosylated Rv1860 Protein of Inhibits Dendritic Cell Mediated TH1 and TH17 Polarization of T Cells and Abrogates Protective Immunity Conferred by BCG
- A Genome-Wide Tethering Screen Reveals Novel Potential Post-Transcriptional Regulators in
- Structural Insights into SraP-Mediated Adhesion to Host Cells
- Human IGF1 Regulates Midgut Oxidative Stress and Epithelial Homeostasis to Balance Lifespan and resistance in
- Cycling Empirical Antibiotic Therapy in Hospitals: Meta-Analysis and Models
- Rab11 Regulates Trafficking of -sialidase to the Plasma Membrane through the Contractile Vacuole Complex of
- Mitogen and Stress Activated Kinases Act Co-operatively with CREB during the Induction of Human Cytomegalovirus Immediate-Early Gene Expression from Latency
- Profilin Promotes Recruitment of Ly6C CCR2 Inflammatory Monocytes That Can Confer Resistance to Bacterial Infection
- A Central Role for Carbon-Overflow Pathways in the Modulation of Bacterial Cell Death
- An Invertebrate Warburg Effect: A Shrimp Virus Achieves Successful Replication by Altering the Host Metabolome via the PI3K-Akt-mTOR Pathway
- The Highly Conserved Bacterial RNase YbeY Is Essential in , Playing a Critical Role in Virulence, Stress Regulation, and RNA Processing
- A Virulent Strain of Deformed Wing Virus (DWV) of Honeybees () Prevails after -Mediated, or , Transmission
- Systematic Phenotyping of a Large-Scale Deletion Collection Reveals Novel Antifungal Tolerance Genes
- Ubiquitin-Mediated Response to Microsporidia and Virus Infection in
- Preclinical Detection of Variant CJD and BSE Prions in Blood
- Toll-Like Receptor 8 Agonist and Bacteria Trigger Potent Activation of Innate Immune Cells in Human Liver
- Progressive Proximal-to-Distal Reduction in Expression of the Tight Junction Complex in Colonic Epithelium of Virally-Suppressed HIV+ Individuals
- The Triggering Receptor Expressed on Myeloid Cells 2 Inhibits Complement Component 1q Effector Mechanisms and Exerts Detrimental Effects during Pneumococcal Pneumonia
- Differential Activation of Acid Sphingomyelinase and Ceramide Release Determines Invasiveness of into Brain Endothelial Cells
- Forward Genetic Screening Identifies a Small Molecule That Blocks Growth by Inhibiting Both Host- and Parasite-Encoded Kinases
- Defining Immune Engagement Thresholds for Control of Virus-Driven Lymphoproliferation
- Growth Factor and Th2 Cytokine Signaling Pathways Converge at STAT6 to Promote Arginase Expression in Progressive Experimental Visceral Leishmaniasis
- Multimeric Assembly of Host-Pathogen Adhesion Complexes Involved in Apicomplexan Invasion
- Biogenesis of Influenza A Virus Hemagglutinin Cross-Protective Stem Epitopes
- Adequate Th2-Type Response Associates with Restricted Bacterial Growth in Latent Mycobacterial Infection of Zebrafish
- Protective Efficacy of Passive Immunization with Monoclonal Antibodies in Animal Models of H5N1 Highly Pathogenic Avian Influenza Virus Infection
- Fructose-Asparagine Is a Primary Nutrient during Growth of in the Inflamed Intestine
- The Calcium-Dependent Protein Kinase 3 of Influences Basal Calcium Levels and Functions beyond Egress as Revealed by Quantitative Phosphoproteome Analysis
- A Translocated Effector Required for Dissemination from Derma to Blood Safeguards Migratory Host Cells from Damage by Co-translocated Effectors
- Functional Characterization of a Novel Family of Acetylcholine-Gated Chloride Channels in
- Both α2,3- and α2,6-Linked Sialic Acids on O-Linked Glycoproteins Act as Functional Receptors for Porcine Sapovirus
- The Contribution of Social Behaviour to the Transmission of Influenza A in a Human Population
- MicroRNA-146a Provides Feedback Regulation of Lyme Arthritis but Not Carditis during Infection with
- Recombination in Enteroviruses Is a Biphasic Replicative Process Involving the Generation of Greater-than Genome Length ‘Imprecise’ Intermediates
- Cytoplasmic Viral RNA-Dependent RNA Polymerase Disrupts the Intracellular Splicing Machinery by Entering the Nucleus and Interfering with Prp8
- and Are Associated with Murine Susceptibility to Infection and Human Sepsis
- PLOS Pathogens
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- Profilin Promotes Recruitment of Ly6C CCR2 Inflammatory Monocytes That Can Confer Resistance to Bacterial Infection
- Fungal Nail Infections (Onychomycosis): A Never-Ending Story?
- Contribution of Specific Residues of the β-Solenoid Fold to HET-s Prion Function, Amyloid Structure and Stability
- The Highly Conserved Bacterial RNase YbeY Is Essential in , Playing a Critical Role in Virulence, Stress Regulation, and RNA Processing
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy