#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Genome Wide Identification of SARS-CoV Susceptibility Loci Using the Collaborative Cross


New emerging pathogens are a significant threat to human health with at least six highly pathogenic viruses, including four respiratory viruses, having spread from animal hosts into the human population within the past 15 years. With the emergence of new pathogens, new and better animal models are needed in order to better understand the disease these pathogens cause; to assist in the rapid development of therapeutics; and importantly to evaluate the role of natural host genetic variation in regulating disease outcome. We used incipient lines of the Collaborative Cross, a newly available recombinant inbred mouse panel, to identify polymorphic host genes that contribute to SARS-CoV pathogenesis. We discovered new animal models that better capture the range of disease found in human SARS patients and also found four novel susceptibility loci governing various aspects of SARS-induced pathogenesis. By integrating statistical, genetic and bioinformatic approaches we were able to narrow candidate genome regions to highly likely candidate genes. We narrowed one locus to a single candidate gene, Trim55, and confirmed its role in the inflammatory response to SARS-CoV infection through the use of knockout mice. This work identifies a novel function for Trim55 and also demonstrates the utility of the CC as a platform for identifying the genetic contributions of complex traits.


Vyšlo v časopise: Genome Wide Identification of SARS-CoV Susceptibility Loci Using the Collaborative Cross. PLoS Genet 11(10): e32767. doi:10.1371/journal.pgen.1005504
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005504

Souhrn

New emerging pathogens are a significant threat to human health with at least six highly pathogenic viruses, including four respiratory viruses, having spread from animal hosts into the human population within the past 15 years. With the emergence of new pathogens, new and better animal models are needed in order to better understand the disease these pathogens cause; to assist in the rapid development of therapeutics; and importantly to evaluate the role of natural host genetic variation in regulating disease outcome. We used incipient lines of the Collaborative Cross, a newly available recombinant inbred mouse panel, to identify polymorphic host genes that contribute to SARS-CoV pathogenesis. We discovered new animal models that better capture the range of disease found in human SARS patients and also found four novel susceptibility loci governing various aspects of SARS-induced pathogenesis. By integrating statistical, genetic and bioinformatic approaches we were able to narrow candidate genome regions to highly likely candidate genes. We narrowed one locus to a single candidate gene, Trim55, and confirmed its role in the inflammatory response to SARS-CoV infection through the use of knockout mice. This work identifies a novel function for Trim55 and also demonstrates the utility of the CC as a platform for identifying the genetic contributions of complex traits.


Zdroje

1. Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, et al. (2003) Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361: 1319–1325. 12711465

2. Lau SK, Woo PC, Li KS, Huang Y, Tsoi HW, et al. (2005) Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A 102: 14040–14045. 16169905

3. Peiris JS, Chu CM, Cheng VC, Chan KS, Hung IF, et al. (2003) Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 361: 1767–1772. 12781535

4. Chan JW, Ng CK, Chan YH, Mok TY, Lee S, et al. (2003) Short term outcome and risk factors for adverse clinical outcomes in adults with severe acute respiratory syndrome (SARS). Thorax 58: 686–689. 12885985

5. Booth CM, Matukas LM, Tomlinson GA, Rachlis AR, Rose DB, et al. (2003) Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. JAMA 289: 2801–2809. 12734147

6. He Z, Zhao C, Dong Q, Zhuang H, Song S, et al. (2005) Effects of severe acute respiratory syndrome (SARS) coronavirus infection on peripheral blood lymphocytes and their subsets. Int J Infect Dis 9: 323–330. 16095942

7. Franks T, Chong P, Chui P, Galvin J, Lourens R, et al. (2003) Lung pathology of severe acute respiratory syndrome (SARS): a study of 8 autopsy cases from Singapore. Human Pathology 34: 743–748. 14506633

8. Ip WK, Chan KH, Law HK, Tso GH, Kong EK, et al. (2005) Mannose-binding lectin in severe acute respiratory syndrome coronavirus infection. J Infect Dis 191: 1697–1704. 15838797

9. Wang Y, Yan J, Shi Y, Li P, Liu C, et al. (2009) Lack of association between polymorphisms of MASP2 and susceptibility to SARS coronavirus infection. BMC Infect Dis 9: 51. doi: 10.1186/1471-2334-9-51 19405982

10. Roberts A, Deming D, Paddock C, Cheng A, Yount B, et al. (2007) A mouse adapted SARS coronavirus causes disease and mortality in BALB/c mice. Plos Pathog 3(1): e5. 17222058

11. Rockx B, Sheahan T, Donaldson E, Harkema J, Sims AC, et al. (2007) Synthetic Reconstruction of Zoonotic and Early Human SARS-CoV Isolates that Produce Fatal Disease in Aged Mice. J Virol May 16: epub.

12. Gralinski LE, Bankhead A 3rd, Jeng S, Menachery VD, Proll S, et al. (2013) Mechanisms of severe acute respiratory syndrome coronavirus-induced acute lung injury. MBio 4: pii: e00271-00213. doi: 10.1128/mBio.00271-13 23919993

13. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA (2012) Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367: 1814–1820. doi: 10.1056/NEJMoa1211721 23075143

14. Raj VS, Farag EA, Reusken CB, Lamers MM, Pas SD, et al. (2014) Isolation of MERS Coronavirus from a Dromedary Camel, Qatar, 2014. Emerg Infect Dis 20: 1339–1342. doi: 10.3201/eid2008.140663 25075761

15. Corman VM, Ithete NL, Richards LR, Schoeman MC, Preiser W, et al. (2014) Rooting the phylogenetic tree of MERS-Coronavirus by characterization of a conspecific virus from an African Bat. J Virol 88: 11297–11303. doi: 10.1128/JVI.01498-14 25031349

16. Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, et al. (1996) HIV–1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR–5. Nature 381: 667–673. 8649512

17. Lindesmith L, Moe C, Marionneau S, Ruvoen N, Jiang X, et al. (2003) Human susceptibility and resistance to Norwalk virus infection. Nature medicine 9: 548–553. 12692541

18. Ge D, Fellay J, Thompson AJ, Simon JS, Shianna KV, et al. (2009) Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461: 399–401. doi: 10.1038/nature08309 19684573

19. Zhang H, Zhou G, Zhi L, Yang H, Zhai Y, et al. (2005) Association between mannose-binding lectin gene polymorphisms and susceptibility to severe acute respiratory coronavirus infection. J Infectious Dis 192: 1355–1361.

20. Yuan FF, Tanner J, Chan PK, Biffin S, Dyer WB, et al. (2005) Influence of FcgammaRIIA and MBL polymorphisms on severe acute respiratory syndrome. Tissue Antigens 192: 1355–1361.

21. Sheahan T, Morrison TE, Funkhouser W, Uematsu S, Akira S, et al. (2008) MyD88 is required for protection from lethal infection with a mouse-adapted SARS-CoV. Plos Pathog 4: e1000240. doi: 10.1371/journal.ppat.1000240 19079579

22. Frieman MB, Chen J, Morrison TE, Whitmore AC, Funkhouser W, et al. (2010) SARS-CoV pathogenesis is regulated by a STAT1 dependent but a type I, II and III interferon receptor independent mechanism. Plos Pathog 6: e1000849. doi: 10.1371/journal.ppat.1000849 20386712

23. Aylor DL, Valdar W., Foulds-Mathes W., Buus R.J., Verdugo R.A., Baric R.S., Ferris M.T., Frelinger J.A., Heise M., Frieman M.B., et al. (2011) Genetic analysis of complex traits in the emerging Collaborative Cross. Genome Res 21: 1213–1222. doi: 10.1101/gr.111310.110 21406540

24. Churchill GA, Airey DC, Allayee H, Angel JM, Attie AD, et al. (2004) The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat Genet 36: 1133–1137. 15514660

25. Consortium CC (2012) The genome architecture of the Collaborative Cross mouse genetic reference population. Genetics 190: 389–401. doi: 10.1534/genetics.111.132639 22345608

26. Threadgill DW, Miller DR, Churchill GA, de Villena FP (2011) The collaborative cross: a recombinant inbred mouse population for the systems genetic era. ILAR J 52: 24–31. 21411855

27. Ferris MT, Aylor DL, Bottomly D, Whitmore AC, Aicher LD, et al. (2013) Modeling host genetic regulation of influenza pathogenesis in the collaborative cross. PLoS Pathog 9: e1003196. doi: 10.1371/journal.ppat.1003196 23468633

28. Kadarmideen HN, von Rohr P, Janss LL (2006) From genetical genomics to systems genetics: potential applications in quantitative genomics and animal breeding. Mamm Genome 17: 548–564. 16783637

29. Flint J, Valdar W, Shifman S, Mott R (2005) Strategies for mapping and cloning quantitative trait genes in rodents. Nat Rev Genet 6: 271–286. 15803197

30. Valdar W, Flint J, Mott R (2006) Simulating the collaborative cross: power of quantitative trait loci detection and mapping resolution in large sets of recombinant inbred strains of mice. Genetics 172: 1783–1797. 16361245

31. Yang H, Wang JR, Didion JP, Buus RJ, Bell TA, et al. (2011) Subspecific origin and haplotype diversity in the laboratory mouse. Nat Genet 43: 648–655. doi: 10.1038/ng.847 21623374

32. Roberts A, Pardo-Manuel de Villena F, Wang W, McMillan L, Threadgill DW (2007) The polymorphism architecture of mouse genetic resources elucidated using genome wide resequencing data: implications for QTL discovery and systems genetics. Mamm Genome 18: 473–481. 17674098

33. Kwon D, Shin K, Kim S, Ha Y, Choi JH, et al. (2010) Replication and pathogenesis of the pandemic (H1N1) 2009 influenza virus in mammalian models. J Microbiol 48: 657–662. doi: 10.1007/s12275-010-0120-z 21046344

34. Shubitz LF, Dial SM, Perrill R, Casement R, Galgiani JN (2008) Vaccine-induced cellular immune responses differ from innate responses in susceptible and resistant strains of mice infected with Coccidioides posadasii. Infect Immun 76: 5553–5564. doi: 10.1128/IAI.00885-08 18852250

35. Clay CC, Donart N, Fomukong N, Knight JB, Overheim K, et al. (2014) Severe acute respiratory syndrome-coronavirus infection in aged nonhuman primates is associated with modulated pulmonary and systemic immune responses. Immun Ageing 11: 4. doi: 10.1186/1742-4933-11-4 24642138

36. Lowe K, Alvarez DF, King JA, Stevens T (2010) Perivascular fluid cuffs decrease lung compliance by increasing tissue resistance. Crit Care Med 38: 1458–1466. doi: 10.1097/CCM.0b013e3181de18f0 20400904

37. Keane TM, Goodstadt L, Danecek P, White MA, Wong K, et al. (2011) Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477: 289–294. doi: 10.1038/nature10413 21921910

38. Loffredo S, Staiano RI, Granata F, Genovese A, Marone G (2014) Immune cells as a source and target of angiogenic and lymphangiogenic factors. Chem Immunol Allergy 99: 15–36. doi: 10.1159/000353316 24217601

39. Ose R, Yanagawa T, Ikeda S, Ohara O, Koga H (2009) PCDH24-induced contact inhibition involves downregulation of beta-catenin signaling. Mol Oncol 3: 54–66. doi: 10.1016/j.molonc.2008.10.005 19383367

40. Pizon V, Iakovenko A, Van Der Ven PF, Kelly R, Fatu C, et al. (2002) Transient association of titin and myosin with microtubules in nascent myofibrils directed by the MURF2 RING-finger protein. J Cell Sci 115: 4469–4482. 12414993

41. Willis MS, Wadosky KM, Rodriguez JE, Schisler JC, Lockyer P, et al. (2014) Muscle ring finger 1 and muscle ring finger 2 are necessary but functionally redundant during developmental cardiac growth and regulate E2F1-mediated gene expression in vivo. Cell Biochem Funct 32: 39–50. doi: 10.1002/cbf.2969 23512667

42. Ozato K, Shin DM, Chang TH, Morse HC 3rd (2008) TRIM family proteins and their emerging roles in innate immunity. Nat Rev Immunol 8: 849–860. doi: 10.1038/nri2413 18836477

43. Witt CC, Witt SH, Lerche S, Labeit D, Back W, et al. (2008) Cooperative control of striated muscle mass and metabolism by MuRF1 and MuRF2. EMBO J 27: 350–360. 18157088

44. Hirai A, Ohtsuka N, Ikeda T, Taniguchi R, Blau D, et al. Role of mouse hepatitis virus (MHV) receptor murine CEACAM1 in the resistance of mice to MHV infection: studies of mice with chimeric mCEACAM1a and mCEACAM1b. J Virol 84: 6654–6666. doi: 10.1128/JVI.02680-09 20410265

45. Evermann JF, Heeney JL, Roelke ME, McKeirman AJ, O'Brien SJ (1988) Biological and pathological consequences of feline infectious peritonitis virus infection in the cheetah. Arch Virol 102: 155–171. 2849387

46. O'Brien SJ, Roelke ME, Marker L, Newman A, Winkler CA, et al. (1985) Genetic basis for species vulnerability in the cheetah. Science 22: 1428–1434.

47. Sureshkumar V, Paul B, Uthirappan M, Pandey R, Sahu AP, et al. (2005) Proinflammatory and anti-inflammatory cytokine balance in gasoline exhaust induced pulmonary injury in mice. Inhal Toxicol 17: 161–168. 15788377

48. Mehlhop PD, van de Rijn M, Goldberg AB, Brewer JP, Kurup VP, et al. (1997) Allergen-induced bronchial hyperreactivity and eosinophilic inflammation occur in the absence of IgE in a mouse model of asthma. Proc Natl Acad Sci U S A 94: 1344–1349. 9037055

49. Goldblum SE, Hennig B, Jay M, Yoneda K, McClain CJ (1989) Tumor necrosis factor alpha-induced pulmonary vascular endothelial injury. Infect Immun 57: 1218–1226. 2925247

50. Puri RK, Travis WD, Rosenberg SA (1989) Decrease in interleukin 2-induced vascular leakage in the lungs of mice by administration of recombinant interleukin 1 alpha in vivo. Cancer Res 49: 969–976. 2783561

51. Jonczyk MS, Simon M, Kumar S, Fernandes VE, Sylvius N, et al. Genetic factors regulating lung vasculature and immune cell functions associate with resistance to pneumococcal infection. PLoS One 9: e89831. doi: 10.1371/journal.pone.0089831 24594938

52. Nichols JL, Gladwell W, Verhein KC, Cho HY, Wess J, et al. Genome-wide association mapping of acute lung injury in neonatal inbred mice. FASEB J 28: 2538–2550. doi: 10.1096/fj.13-247221 24571919

53. Lee SH, Girard S, Macina D, Busa M, Zafer A, et al. (2001) Susceptibility to mouse cytomegalovirus is associated with deletion of an activating natural killer cell receptor of the C-type lectin superfamily. Nat Genet 28: 42–45. 11326273

54. Scalzo AA, Fitzgerald NA, Simmons A, La Vista AB, Shellam GR (1990) Cmv–1, a genetic locus that controls murine cytomegalovirus replication in the spleen. J Exp Med 171: 1469–1483. 2159050

55. Perera S, Holt MR, Mankoo BS, Gautel M Developmental regulation of MURF ubiquitin ligases and autophagy proteins nbr1, p62/SQSTM1 and LC3 during cardiac myofibril assembly and turnover. Dev Biol 351: 46–61. doi: 10.1016/j.ydbio.2010.12.024 21185285

56. Sorokin L The impact of the extracellular matrix on inflammation. Nat Rev Immunol 10: 712–723. doi: 10.1038/nri2852 20865019

57. Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, et al. (2004) Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10: 1366–1373. 15558055

58. van Hinsbergh VW, van Nieuw Amerongen GP (2002) Intracellular signalling involved in modulating human endothelial barrier function. J Anat 200: 549–560. 12162723

59. Wessel F, Winderlich M, Holm M, Frye M, Rivera-Galdos R, et al. Leukocyte extravasation and vascular permeability are each controlled in vivo by different tyrosine residues of VE-cadherin. Nat Immunol 15: 223–230. doi: 10.1038/ni.2824 24487320

60. Crawley SW, Shifrin DA Jr., Grega-Larson NE, McConnell RE, Benesh AE, et al. (2014) Intestinal brush border assembly driven by protocadherin-based intermicrovillar adhesion. Cell 157: 433–446. doi: 10.1016/j.cell.2014.01.067 24725409

61. Heemskerk N, van Rijssel J, van Buul JD Rho-GTPase signaling in leukocyte extravasation: An endothelial point of view. Cell Adh Migr 8: 67–75. 24621576

62. Threadgill DW, Churchill GA (2012) Ten years of the collaborative cross. G3 (Bethesda) 2: 153–156.

63. Kelada SN, Aylor DL, Peck BC, Ryan JF, Tavarez U, et al. (2012) Genetic analysis of hematological parameters in incipient lines of the collaborative cross. G3 (Bethesda) 2: 157–165.

64. Phillippi J, Xie Y, Miller DR, Bell TA, Zhang Z, et al. (2014) Using the emerging Collaborative Cross to probe the immune system. Genes Immun 15: 38–46. doi: 10.1038/gene.2013.59 24195963

65. Durrant C, Tayem H, Yalcin B, Cleak J, Goodstadt L, et al. (2011) Collaborative Cross mice and their power to map host susceptibility to Aspergillus fumigatus infection. Genome Res 21: 1239–1248. doi: 10.1101/gr.118786.110 21493779

66. Bottomly D, Ferris MT, Aicher LD, Rosenzweig E, Whitmore A, et al. (2012) Expression quantitative trait Loci for extreme host response to influenza a in pre-collaborative cross mice. G3 (Bethesda) 2: 213–221.

67. Rogala AR, Morgan AP, Christensen AM, Gooch TJ, Bell TA, et al. (2014) The Collaborative Cross as a resource for modeling human disease: CC011/Unc, a new mouse model for spontaneous colitis. Mamm Genome 25: 95–108. doi: 10.1007/s00335-013-9499-2 24487921

68. Rasmussen AL, Okumura A, Ferris MT, Green R, Feldmann F, et al. (2014) Host genetic diversity enables Ebola hemorrhagic fever pathogenesis and resistance. Science.

69. Mathes WF, Aylor DL, Miller DR, Churchill GA, Chesler EJ, et al. (2011) Architecture of energy balance traits in emerging lines of the Collaborative Cross. Am J Physiol Endocrinol Metab 300: 124–134.

70. Philip VM, Sokoloff G, Ackert-Bicknell CL, Striz M, Branstetter L, et al. (2011) Genetic analysis in the Collaborative Cross breeding population. Genome Res 21: 1223–1238. doi: 10.1101/gr.113886.110 21734011

71. Yount B, Roberts RS, Sims AC, Deming D, Frieman MB, et al. (2005) Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice. J Virol 79: 14909–14922. 16282490

72. Yang H, Ding Y, Hutchins LN, Szatkiewicz J, Bell TA, et al. (2009) A customized and versatile high-density genotyping array for the mouse. Nat Methods 6: 663–666. doi: 10.1038/nmeth.1359 19668205

73. Mott R, Talbot CJ, Turri MG, Collins AC, Flint J (2000) A method for fine mapping quantitative trait loci in outbred animal stocks. Proc Natl Acad Sci U S A 97: 12649–12654. 11050180

74. Cox A, Ackert-Bicknell CL, Dumont BL, Ding Y, Bell JT, et al. (2009) A new standard genetic map for the laboratory mouse. Genetics 182: 1335–1344. doi: 10.1534/genetics.109.105486 19535546

75. Valdar W, Holmes CC, Mott R, Flint J (2009) Mapping in structured populations by resample model averaging. Genetics 182: 1263–1277. doi: 10.1534/genetics.109.100727 19474203

76. Lopez-Romero P Agi4x44PreProcess: Preprocessing of Agilent 4x44 array data.

77. Belisle SE, Tisoncik JR, Korth MJ, Carter VS, Proll SC, et al. Genomic profiling of tumor necrosis factor alpha (TNF-alpha) receptor and interleukin–1 receptor knockout mice reveals a link between TNF-alpha signaling and increased severity of 1918 pandemic influenza virus infection. J Virol 84: 12576–12588. doi: 10.1128/JVI.01310-10 20926563

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#