#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Brg1 Loss Attenuates Aberrant Wnt-Signalling and Prevents Wnt-Dependent Tumourigenesis in the Murine Small Intestine


Aberrant Wnt signalling is responsible for the majority of colorectal cancers, the third leading cause of cancer-related mortality in the UK. However, no therapies directly targeting Wnt signalling are currently available. Using mouse models of intestinal cancer, we demonstrate that deleting chromatin remodelling factor Brg1 in the context of Apc-deficient small intestinal epithelium attenuates Wnt-driven gene expression changes and prevents adenoma formation, which results in extended animal survival. We also demonstrate that Brg1 loss impairs the small intestinal stem cell expansion associated with aberrant activation of Wnt signalling. These findings highlight Brg1 as a potential therapeutic target in Wnt-driven intestinal tumourigenesis and illustrate the viability of targeting the somatic stem cell as the ‘cell of origin’ of cancer, which might be particularly valuable in patients with known predisposition to cancer.


Vyšlo v časopise: Brg1 Loss Attenuates Aberrant Wnt-Signalling and Prevents Wnt-Dependent Tumourigenesis in the Murine Small Intestine. PLoS Genet 10(7): e32767. doi:10.1371/journal.pgen.1004453
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004453

Souhrn

Aberrant Wnt signalling is responsible for the majority of colorectal cancers, the third leading cause of cancer-related mortality in the UK. However, no therapies directly targeting Wnt signalling are currently available. Using mouse models of intestinal cancer, we demonstrate that deleting chromatin remodelling factor Brg1 in the context of Apc-deficient small intestinal epithelium attenuates Wnt-driven gene expression changes and prevents adenoma formation, which results in extended animal survival. We also demonstrate that Brg1 loss impairs the small intestinal stem cell expansion associated with aberrant activation of Wnt signalling. These findings highlight Brg1 as a potential therapeutic target in Wnt-driven intestinal tumourigenesis and illustrate the viability of targeting the somatic stem cell as the ‘cell of origin’ of cancer, which might be particularly valuable in patients with known predisposition to cancer.


Zdroje

1. GilesRH, van EsJH, CleversH (2003) Caught up in a Wnt storm: Wnt signaling in cancer. Biochimica et biophysica acta 1653: 1–24.

2. GehrkeI, GandhirajanRK, KreuzerK-A (2009) Targeting the WNT/[beta]-catenin/TCF/LEF1 axis in solid and haematological cancers: Multiplicity of therapeutic options. European Journal of Cancer 45: 2759–2767.

3. EllisL, AtadjaPW, JohnstoneRW (2009) Epigenetics in cancer: targeting chromatin modifications. Molecular Cancer Therapeutics 8: 1409–1420.

4. KhavariPA, PetersonCL, TamkunJW, MendelDB, CrabtreeGR (1993) BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature 366: 170–174.

5. TrotterKW, ArcherTK (2008) The BRG1 transcriptional coregulator. Nuclear Receptor Signaling 6: e004.

6. BeckerTM, HaferkampS, DijkstraMK, ScurrLL, FraustoM, et al. (2009) The chromatin remodelling factor BRG1 is a novel binding partner of the tumor suppressor p16INK4a. Molecular Cancer 8: 4.

7. MedinaPP, CarreteroJ, FragaMF, EstellerM, SidranskyD, et al. (2004) Genetic and Epigenetic screening for gene alterations of the chromatin-remodeling factor, SMARCA4/BRG1, in lung tumors. Genes, Chromosomes and Cancer 41: 170–177.

8. ReismanDN, SciarrottaJ, WangW, FunkhouserWK, WeissmanBE (2003) Loss of BRG1/BRM in Human Lung Cancer Cell Lines and Primary Lung Cancers: Correlation with Poor Prognosis. Cancer Res 63: 560–566.

9. WongAKC, ShanahanF, ChenY, LianL, HaP, et al. (2000) BRG1, a Component of the SWI-SNF Complex, Is Mutated in Multiple Human Tumor Cell Lines. Cancer Res 60: 6171–6177.

10. BultmanSJ, HerschkowitzJI, GodfreyV, GebuhrTC, YanivM, et al. (2008) Characterization of mammary tumors from Brg1 heterozygous mice. Oncogene 27: 460–468.

11. GlarosS, CirrincioneGM, PalancaA, MetzgerD, ReismanD (2008) Targeted Knockout of BRG1 Potentiates Lung Cancer Development. Cancer Res 68: 3689–3696.

12. BarkerN, HurlstoneA, MusisiH, MilesA, BienzM, et al. (2001) The chromatin remodelling factor Brg-1 interacts with β-catenin to promote target gene activation. The EMBO Journal 20: 4935–4943.

13. ParkJ-I, VenteicherAS, HongJY, ChoiJ, JunS, et al. (2009) Telomerase modulates Wnt signalling by association with target gene chromatin. Nature 460: 66–72.

14. HolikAZ, KrzystyniakJ, YoungM, RichardsonK, JardéT, et al. (2013) Brg1 is required for stem cell maintenance in the murine intestinal epithelium in a tissue-specific manner. Stem Cells 31: 2457–2466 doi:10.1002/stem.1498

15. ShibataH, ToyamaK, ShioyaH, ItoM, HirotaM, et al. (1997) Rapid Colorectal Adenoma Formation Initiated by Conditional Targeting of the Apc Gene. Science 278: 120–123.

16. Sumi-IchinoseC, IchinoseH, MetzgerD, ChambonP (1997) SNF2beta-BRG1 is essential for the viability of F9 murine embryonal carcinoma cells. Molecular and Cellular Biology 17: 5976–5986.

17. IndraAK, DupéV, BornertJ-M, MessaddeqN, YanivM, et al. (2005) Temporally controlled targeted somatic mutagenesis in embryonic surface ectoderm and fetal epidermal keratinocytes unveils two distinct developmental functions of BRG1 in limb morphogenesis and skin barrier formation. Development 132: 4533–4544.

18. el MarjouF, JanssenK-P, ChangBH-J, LiM, HindieV, et al. (2004) Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis (New York, NY: 2000) 39: 186–193.

19. SansomOJ, ReedKR, HayesAJ, IrelandH, BrinkmannH, et al. (2004) Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes & Development 18: 1385–1390.

20. SatoT, van EsJH, SnippertHJ, StangeDE, VriesRG, et al. (2011) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469: 415–418.

21. JhoE-h, ZhangT, DomonC, JooC-K, FreundJ-N, et al. (2002) Wnt/{beta}-Catenin/Tcf Signaling Induces the Transcription of Axin2, a Negative Regulator of the Signaling Pathway. Mol Cell Biol 22: 1172–1183.

22. Wnt Target genes | The Wnt Homepage (n.d.). Available: http://www.stanford.edu/group/nusselab/cgi-bin/wnt/target_genes. Accessed 25 September 2012.

23. BarkerN, van EsJH, KuipersJ, KujalaP, van den BornM, et al. (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449: 1003–1007.

24. MuñozJ, StangeDE, SchepersAG, van de WeteringM, KooB-K, et al. (2012) The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent ‘+4’ cell markers. The EMBO journal 31: 3079–3091.

25. WuD, LimE, VaillantF, Asselin-LabatM-L, VisvaderJE, et al. (2010) ROAST: rotation gene set tests for complex microarray experiments. Bioinformatics 26: 2176–2182.

26. Smyth GK (2005) Limma: linear models for microarray data. Bioinformatics and Computational Biology Solutions Using {R} and Bioconductor. New York: Springer. pp. 397–420.

27. van der FlierLG, HaegebarthA, StangeDE, van de WeteringM, CleversH (2009) OLFM4 Is a Robust Marker for Stem Cells in Human Intestine and Marks a Subset of Colorectal Cancer Cells. Gastroenterology 137: 15–17.

28. BarkerN, RidgwayRA, van EsJH, van de WeteringM, BegthelH, et al. (2009) Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457: 608–611.

29. JubbAM, ChalasaniS, FrantzGD, SmitsR, GrabschHI, et al. (2006) Achaete-scute like 2 (ascl2) is a target of Wnt signalling and is upregulated in intestinal neoplasia. Oncogene 25: 3445–3457.

30. KempR, IrelandH, ClaytonE, HoughtonC, HowardL, et al. (2004) Elimination of background recombination: somatic induction of Cre by combined transcriptional regulation and hormone binding affinity. Nucleic Acids Research 32: e92.

31. ErogluB, WangG, TuN, SunX, MivechiNF (2006) Critical role of Brg1 member of the SWI/SNF chromatin remodeling complex during neurogenesis and neural crest induction in zebrafish. Developmental Dynamics: An Official Publication of the American Association of Anatomists 235: 2722–2735.

32. GriffinCT, CurtisCD, DavisRB, MuthukumarV, MagnusonT (2011) The chromatin-remodeling enzyme BRG1 modulates vascular Wnt signaling at two levels. Proceedings of the National Academy of Sciences 108: 2282–2287.

33. MahmoudiT, BojSF, HatzisP, LiVSW, TaouatasN, et al. (2010) The Leukemia-Associated Mllt10/Af10-Dot1l Are Tcf4/β-Catenin Coactivators Essential for Intestinal Homeostasis. PLoS Biol 8: e1000539.

34. YuL, WangL, ChenS (2011) Olfactomedin 4, a novel marker for the differentiation and progression of gastrointestinal cancers. Neoplasma 58: 9–13.

35. LiuR-h, YangM-h, XiangH, BaoL-m, YangH-a, et al. (2012) Depletion of OLFM4 gene inhibits cell growth and increases sensitization to hydrogen peroxide and tumor necrosis factor-alpha induced-apoptosis in gastric cancer cells. Journal of Biomedical Science 19: 38.

36. OhH-K, TanAL-K, DasK, OoiC-H, DengN-T, et al. (2011) Genomic Loss of miR-486 Regulates Tumor Progression and the OLFM4 Antiapoptotic Factor in Gastric Cancer. Clinical Cancer Research 17: 2657–2667.

37. BatlleE, HendersonJT, BeghtelH, van den BornMMW, SanchoE, et al. (2002) beta-Catenin and TCF Mediate Cell Positioning in the Intestinal Epithelium by Controlling the Expression of EphB/EphrinB. Cell 111: 251–263.

38. PhesseTJ, ParryL, ReedKR, EwanKB, DaleTC, et al. (2008) Deficiency of Mbd2 Attenuates Wnt Signaling. Mol Cell Biol 28: 6094–6103.

39. WangX, SansamCG, ThomCS, MetzgerD, EvansJA, et al. (2009) Oncogenesis caused by loss of the SNF5 tumor suppressor is dependent on activity of BRG1, the ATPase of the SWI/SNF chromatin remodeling complex. Cancer research 69: 8094–8101.

40. Merlos-SuárezA, BarrigaFM, JungP, IglesiasM, CéspedesMV, et al. (2011) The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell stem cell 8: 511–524.

41. Alcantara LlagunoS, ChenJ, KwonC-H, JacksonEL, LiY, et al. (2009) Malignant Astrocytomas Originate from Neural Stem/Progenitor Cells in a Somatic Tumor Suppressor Mouse Model. Cancer Cell 15: 45–56.

42. ChenJ, LiY, YuT-S, McKayRM, BurnsDK, et al. (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488: 522–526.

43. LeedhamSJ, Rodenas-CuadradoP, HowarthK, LewisA, MallappaS, et al. (2013) A basal gradient of Wnt and stem-cell number influences regional tumour distribution in human and mouse intestinal tracts. Gut 62: 83–93.

44. R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

45. DunningMJ, SmithML, RitchieME, TavaréS (2007) beadarray: R classes and methods for Illumina bead-based data. Bioinformatics 23: 2183–2184.

46. MarshV, WintonDJ, WilliamsGT, DuboisN, TrumppA, et al. (2008) Epithelial Pten is dispensable for intestinal homeostasis but suppresses adenoma development and progression after Apc mutation. Nat Genet 40: 1436–1444.

47. SatoT, VriesRG, SnippertHJ, van de WeteringM, BarkerN, et al. (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459: 262–265.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#