#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

8.2% of the Human Genome Is Constrained: Variation in Rates of Turnover across Functional Element Classes in the Human Lineage


Nearly 99% of the human genome does not encode proteins, and while there recently has been extensive biochemical annotation of the remaining noncoding fraction, it remains unclear whether or not the bulk of these DNA sequences have important functional roles. By comparing the genome sequences of different species we identify genomic regions that have evolved unexpectedly slowly, a signature of natural selection upon functional sequence. Using a high resolution evolutionary approach to find sequence showing evolutionary signatures of functionality we estimate that a total of 8.2% (7.1–9.2%) of the human genome is presently functional, more than three times as much than is functional and shared between human and mouse. This implies that there is an abundance of sequences with short lived lineage-specific functionality. As expected, most of the sequence involved in this functional “turnover” is noncoding, while protein coding sequence is stably preserved over longer evolutionary timescales. More generally, we find that the rate of functional turnover varies significantly across categories of functional noncoding elements. Our results provide a pan-mammalian and whole genome perspective on how rapidly different classes of sequence have gained and lost functionality down the human lineage.


Vyšlo v časopise: 8.2% of the Human Genome Is Constrained: Variation in Rates of Turnover across Functional Element Classes in the Human Lineage. PLoS Genet 10(7): e32767. doi:10.1371/journal.pgen.1004525
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004525

Souhrn

Nearly 99% of the human genome does not encode proteins, and while there recently has been extensive biochemical annotation of the remaining noncoding fraction, it remains unclear whether or not the bulk of these DNA sequences have important functional roles. By comparing the genome sequences of different species we identify genomic regions that have evolved unexpectedly slowly, a signature of natural selection upon functional sequence. Using a high resolution evolutionary approach to find sequence showing evolutionary signatures of functionality we estimate that a total of 8.2% (7.1–9.2%) of the human genome is presently functional, more than three times as much than is functional and shared between human and mouse. This implies that there is an abundance of sequences with short lived lineage-specific functionality. As expected, most of the sequence involved in this functional “turnover” is noncoding, while protein coding sequence is stably preserved over longer evolutionary timescales. More generally, we find that the rate of functional turnover varies significantly across categories of functional noncoding elements. Our results provide a pan-mammalian and whole genome perspective on how rapidly different classes of sequence have gained and lost functionality down the human lineage.


Zdroje

1. PennisiE (2012) Genomics. ENCODE project writes eulogy for junk DNA. Science 337: 1159, 1161.

2. GraurD, ZhengY, PriceN, AzevedoRB, ZufallRA, et al. (2013) On the immortality of television sets: “function” in the human genome according to the evolution-free gospel of ENCODE. Genome Biol Evol 5: 578–590.

3. PontingCP, HardisonRC (2011) What fraction of the human genome is functional? Genome Res 21: 1769–1776.

4. DoolittleWF (2013) Is junk DNA bunk? A critique of ENCODE. Proc Natl Acad Sci U S A 110(14): 5294–300.

5. DunhamI, KundajeA, AldredSF, CollinsPJ, DavisCA, et al. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489: 57–74.

6. EckerJR, BickmoreWA, BarrosoI, PritchardJK, GiladY, et al. (2012) Genomics: ENCODE explained. Nature 489: 52–55.

7. BersaglieriT, SabetiPC, PattersonN, VanderploegT, SchaffnerSF, et al. (2004) Genetic signatures of strong recent positive selection at the lactase gene. Am J Hum Genet 74: 1111–1120.

8. TakahataN, SattaY, KleinJ (1992) Polymorphism and balancing selection at major histocompatibility complex loci. Genetics 130: 925–938.

9. AllisonAC (1956) The sickle-cell and haemoglobin C genes in some African populations. Ann Hum Genet 21: 67–89.

10. PollardKS, SalamaSR, KingB, KernAD, DreszerT, et al. (2006) Forces shaping the fastest evolving regions in the human genome. PLoS Genet 2: e168.

11. McLeanCY, RenoPL, PollenAA, BassanAI, CapelliniTD, et al. (2011) Human-specific loss of regulatory DNA and the evolution of human-specific traits. Nature 471: 216–219.

12. SiepelA, BejeranoG, PedersenJS, HinrichsAS, HouM, et al. (2005) Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 15: 1034–1050.

13. Ureta-VidalA, EttwillerL, BirneyE (2003) Comparative genomics: genome-wide analysis in metazoan eukaryotes. Nat Rev Genet 4: 251–262.

14. ChiaromonteF, WeberRJ, RoskinKM, DiekhansM, KentWJ, et al. (2003) The share of human genomic DNA under selection estimated from human-mouse genomic alignments. Cold Spring Harb Symp Quant Biol 68: 245–254.

15. MeaderS, PontingCP, LunterG (2010) Massive turnover of functional sequence in human and other mammalian genomes. Genome Res 20: 1335–1343.

16. WardLD, KellisM (2012) Evidence of abundant purifying selection in humans for recently acquired regulatory functions. Science 337: 1675–1678.

17. SmithNG, BrandstromM, EllegrenH (2004) Evidence for turnover of functional noncoding DNA in mammalian genome evolution. Genomics 84: 806–813.

18. LunterG, PontingCP, HeinJ (2006) Genome-wide identification of human functional DNA using a neutral indel model. PLoS Comput Biol 2: e5.

19. DavydovEV, GoodeDL, SirotaM, CooperGM, SidowA, et al. (2010) Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS Comput Biol 6: e1001025.

20. KumarS, SubramanianS (2002) Mutation rates in mammalian genomes. Proc Natl Acad Sci U S A 99: 803–808.

21. HangauerMJ, VaughnIW, McManusMT (2013) Pervasive Transcription of the Human Genome Produces Thousands of Previously Unidentified Long Intergenic Noncoding RNAs. PLoS Genet 9: e1003569.

22. WaterstonRH, Lindblad-TohK, BirneyE, RogersJ, AbrilJF, et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520–562.

23. PontingCP, NellakerC, MeaderS (2011) Rapid turnover of functional sequence in human and other genomes. Annu Rev Genomics Hum Genet 12: 275–299.

24. GreenP, EwingB (2013) Comment on “Evidence of abundant purifying selection in humans for recently acquired regulatory functions”. Science 340: 682 discussion 682.

25. WardLD, KellisM (2013) Response to comment on “Evidence of abundant purifying selection in humans for recently acquired regulatory functions”. Science 340: 682.

26. ThomasJW, TouchmanJW, BlakesleyRW, BouffardGG, Beckstrom-SternbergSM, et al. (2003) Comparative analyses of multi-species sequences from targeted genomic regions. Nature 424: 788–793.

27. OdomDT, DowellRD, JacobsenES, GordonW, DanfordTW, et al. (2007) Tissue-specific transcriptional regulation has diverged significantly between human and mouse. Nat Genet 39: 730–732.

28. SchmidtD, WilsonMD, BallesterB, SchwaliePC, BrownGD, et al. (2010) Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science 328: 1036–1040.

29. LudwigMZ, BergmanC, PatelNH, KreitmanM (2000) Evidence for stabilizing selection in a eukaryotic enhancer element. Nature 403: 564–567.

30. DermitzakisET, ClarkAG (2002) Evolution of transcription factor binding sites in Mammalian gene regulatory regions: conservation and turnover. Mol Biol Evol 19: 1114–1121.

31. DonigerSW, FayJC (2007) Frequent gain and loss of functional transcription factor binding sites. PLoS Comput Biol 3: e99.

32. MosesAM, PollardDA, NixDA, IyerVN, LiXY, et al. (2006) Large-scale turnover of functional transcription factor binding sites in Drosophila. PLoS Comput Biol 2: e130.

33. NecsuleaA, SoumillonM, WarneforsM, LiechtiA, DaishT, et al. (2014) The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature 505: 635–640.

34. LoweCB, KellisM, SiepelA, RaneyBJ, ClampM, et al. (2011) Three periods of regulatory innovation during vertebrate evolution. Science 333: 1019–1024.

35. BlowMJ, McCulleyDJ, LiZ, ZhangT, AkiyamaJA, et al. (2010) ChIP-Seq identification of weakly conserved heart enhancers. Nat Genet 42: 806–810.

36. MayD, BlowMJ, KaplanT, McCulleyDJ, JensenBC, et al. (2012) Large-scale discovery of enhancers from human heart tissue. Nat Genet 44: 89–93.

37. DomeneS, BumaschnyVF, de SouzaFS, FranchiniLF, NasifS, et al. (2013) Enhancer turnover and conserved regulatory function in vertebrate evolution. Philos Trans R Soc Lond B Biol Sci 368: 20130027.

38. BrawandD, SoumillonM, NecsuleaA, JulienP, CsardiG, et al. (2011) The evolution of gene expression levels in mammalian organs. Nature 478: 343–348.

39. ChaixR, SomelM, KreilDP, KhaitovichP, LunterGA (2008) Evolution of primate gene expression: drift and corrective sweeps? Genetics 180: 1379–1389.

40. AmesRM, LovellSC (2011) Diversification at transcription factor binding sites within a species and the implications for environmental adaptation. Mol Biol Evol 28: 3331–3344.

41. Lindblad-TohK, GarberM, ZukO, LinMF, ParkerBJ, et al. (2011) A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478: 476–482.

42. Smit AFA, Hubley R, Green P (1996–2010) RepeatMasker Open-3.0.

43. KentWJ, BaertschR, HinrichsA, MillerW, HausslerD (2003) Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A 100: 11484–11489.

44. SchwartzS, KentWJ, SmitA, ZhangZ, BaertschR, et al. (2003) Human-mouse alignments with BLASTZ. Genome Res 13: 103–107.

45. ChiaromonteF, YapVB, MillerW (2002) Scoring pairwise genomic sequence alignments. Pac Symp Biocomput 115–126.

46. YangZ (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24: 1586–1591.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#