#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

An Intronic microRNA Links Rb/E2F and EGFR Signaling


Animal genomes encode hundreds of microRNA genes that impact all areas of biology by limiting the expression of their targets. What remains largely unappreciated is that a significant proportion of microRNA genes are embedded within protein-coding genes, and are often co-expressed with their hosts, which raises the possibility of a functional interaction between them. The mir-998 gene is located within an intron of the gene encoding Drosophila E2F1 transcription factor. E2F1 can induce the expression of cell death genes, and its activity is negatively regulated by the pRB tumour suppressor protein. In certain settings, unrestrained E2F1 activity is sufficient to induce cell death in cells lacking functional pRB. Here, we show that miR-998 limits cell death in Rb-deficient cells by repressing dCbl, a negative regulator of Epidermal Growth Factor Receptor signaling (EGFR). miR-998 also augments EGFR signaling in differentiating photoreceptor cells. Furthermore, we show that the interaction between miR-998 and Cbl is conserved: in human cells, miR-29, a mir-29/998 seed family member, enhances EGFR signaling by targeting c-Cbl. Therefore, by examining the role of an intronic microRNA in the context of its host's function, we identified an important microRNA target and uncovered a biological function of the microRNA.


Vyšlo v časopise: An Intronic microRNA Links Rb/E2F and EGFR Signaling. PLoS Genet 10(7): e32767. doi:10.1371/journal.pgen.1004493
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004493

Souhrn

Animal genomes encode hundreds of microRNA genes that impact all areas of biology by limiting the expression of their targets. What remains largely unappreciated is that a significant proportion of microRNA genes are embedded within protein-coding genes, and are often co-expressed with their hosts, which raises the possibility of a functional interaction between them. The mir-998 gene is located within an intron of the gene encoding Drosophila E2F1 transcription factor. E2F1 can induce the expression of cell death genes, and its activity is negatively regulated by the pRB tumour suppressor protein. In certain settings, unrestrained E2F1 activity is sufficient to induce cell death in cells lacking functional pRB. Here, we show that miR-998 limits cell death in Rb-deficient cells by repressing dCbl, a negative regulator of Epidermal Growth Factor Receptor signaling (EGFR). miR-998 also augments EGFR signaling in differentiating photoreceptor cells. Furthermore, we show that the interaction between miR-998 and Cbl is conserved: in human cells, miR-29, a mir-29/998 seed family member, enhances EGFR signaling by targeting c-Cbl. Therefore, by examining the role of an intronic microRNA in the context of its host's function, we identified an important microRNA target and uncovered a biological function of the microRNA.


Zdroje

1. MiskaEA, Alvarez-SaavedraE, AbbottAL, LauNC, HellmanAB, et al. (2007) Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet 3: e215 doi:10.1371/journal.pgen.0030215

2. Alvarez-SaavedraE, HorvitzHR (2010) Many families of C. elegans microRNAs are not essential for development or viability. Curr Biol 20: 367–373 doi:10.1016/j.cub.2009.12.051

3. BrennerJL, JasiewiczKL, FahleyAF, KempBJ, AbbottAL (2010) Loss of individual microRNAs causes mutant phenotypes in sensitized genetic backgrounds in C. elegans. Curr Biol 20: 1321–1325 doi:10.1016/j.cub.2010.05.062

4. IzumiyaM, OkamotoK, TsuchiyaN, NakagamaH (2010) Functional screening using a microRNA virus library and microarrays: a new high-throughput assay to identify tumor-suppressive microRNAs. Carcinogenesis 31: 1354–1359 doi:10.1093/carcin/bgq112

5. HerranzH, HongX, HungNT, VoorhoevePM, CohenSM (2012) Oncogenic cooperation between SOCS family proteins and EGFR identified using a Drosophila epithelial transformation model. Genes & Development 26: 1602–1611 doi:10.1101/gad.192021.112

6. KimVN, HanJ, SiomiMC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10: 126–139 doi:10.1038/nrm2632

7. BaskervilleS, BartelDP (2005) Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11: 241–247 doi:10.1261/rna.7240905

8. TruscottM, IslamABMMK, López-BigasN, FrolovMV (2011) mir-11 limits the proapoptotic function of its host gene, dE2f1. Genes & Development 25: 1820–1834 doi:10.1101/gad.16947411

9. Najafi-ShoushtariSH, KristoF, LiY, ShiodaT, CohenDE, et al. (2010) MicroRNA-33 and the SREBP Host Genes Cooperate to Control Cholesterol Homeostasis. Science 328: 1566–1569 doi:10.1126/science.1189123

10. DillH, LinderB, FehrA, FischerU (2012) Intronic miR-26b controls neuronal differentiation by repressing its host transcript, ctdsp2. Genes & Development 26: 25–30 doi:10.1101/gad.177774.111

11. HinskeLCG, GalantePAF, KuoWP, Ohno-MachadoL (2010) A potential role for intragenic miRNAs on their hosts' interactome. BMC Genomics 11: 533 doi:10.1186/1471-2164-11-533

12. van RooijE, SutherlandLB, QiX, RichardsonJA, HillJ, et al. (2007) Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316: 575–579 doi:10.1126/science.1139089

13. MoonN-S, Di StefanoL, DysonN (2006) A gradient of epidermal growth factor receptor signaling determines the sensitivity of rbf1 mutant cells to E2F-dependent apoptosis. Molecular and Cellular Biology 26: 7601–7615 doi:10.1128/MCB.00836-06

14. MorrisEJ, MichaudWA, JiJ-Y, MoonN-S, RoccoJW, et al. (2006) Functional identification of Api5 as a suppressor of E2F-dependent apoptosis in vivo. PLoS Genet 2: e196 doi:10.1371/journal.pgen.0020196

15. DuW, XieJE, DysonN (1996) Ectopic expression of dE2F and dDP induces cell proliferation and death in the Drosophila eye. EMBO J 15: 3684–3692.

16. GabayL, SegerR, ShiloBZ (1997) In situ activation pattern of Drosophila EGF receptor pathway during development. Science 277: 1103–1106.

17. KumarJP, MosesK (2001) EGF receptor and Notch signaling act upstream of Eyeless/Pax6 to control eye specification. Cell 104: 687–697 doi:10.1016/S0092-8674(01)00265-3

18. LesokhinAM, YuSY, KatzJ, BakerNE (1999) Several levels of EGF receptor signaling during photoreceptor specification in wild-type, Ellipse, and null mutant Drosophila. Dev Biol 205: 129–144 doi:10.1006/dbio.1998.9121

19. FreemanM (1996) Reiterative Use of the EGF Receptor Triggers Differentiation of All Cell Types in the Drosophila Eye. Cell 87: 651–660.

20. ZakNB, ShiloBZ (1992) Localization of DER and the pattern of cell divisions in wild-type and Ellipse eye imaginal discs. Dev Biol 149: 448–456.

21. KanehisaM, GotoS (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28: 27–30.

22. CarbonS, IrelandA, MungallCJ, ShuS, MarshallB, et al. (2009) AmiGO: online access to ontology and annotation data. Bioinformatics 25: 288–289 doi:10.1093/bioinformatics/btn615

23. Moses K1 (2002) Drosophila eye development. Berlin ; New York : Springer.

24. AbellaJV, ParkM (2009) Breakdown of endocytosis in the oncogenic activation of receptor tyrosine kinases. Am J Physiol Endocrinol Metab 296: E973–E984 doi:10.1152/ajpendo.90857.2008

25. PaiLM, BarceloG, SchüpbachT (2000) D-cbl, a negative regulator of the Egfr pathway, is required for dorsoventral patterning in Drosophila oogenesis. Cell 103: 51–61 doi:10.1016/S0092-8674(00)00104-5

26. JékelyG, SungH-H, LuqueCM, RørthP (2005) Regulators of endocytosis maintain localized receptor tyrosine kinase signaling in guided migration. Developmental Cell 9: 197–207 doi:10.1016/j.devcel.2005.06.004

27. ChangW-L, LiouW, PenH-C, ChouH-Y, ChangY-W, et al. (2008) The gradient of Gurken, a long-range morphogen, is directly regulated by Cbl-mediated endocytosis. Development 135: 1923–1933 doi:10.1242/dev.017103

28. PaiL-M, WangP-Y, ChenS-R, BarceloG, ChangW-L, et al. (2006) Differential effects of Cbl isoforms on Egfr signaling in Drosophila. Mech Dev 123: 450–462 doi:10.1016/j.mod.2006.04.001

29. WangP-Y, PaiL-M (2011) D-Cbl Binding to Drk Leads to Dose-Dependent Down-Regulation of EGFR Signaling and Increases Receptor-Ligand Endocytosis. PLoS ONE 6: e17097 Available: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0017097.

30. Ibáñez-VentosoC, VoraM, DriscollM (2008) Sequence relationships among C. elegans, D. melanogaster and human microRNAs highlight the extensive conservation of microRNAs in biology. PLoS ONE 3: e2818 doi:10.1371/journal.pone.0002818

31. MirandaKC, HuynhT, TayY, AngY-S, TamW-L, et al. (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126: 1203–1217 doi:10.1016/j.cell.2006.07.031

32. HyunS, LeeJH, JinH, NamJ, NamkoongB, et al. (2009) Conserved MicroRNA miR-8/miR-200 and its target USH/FOG2 control growth by regulating PI3K. Cell 139: 1096–1108.

33. BellareP, GanemD (2009) Regulation of KSHV lytic switch protein expression by a virus-encoded microRNA: an evolutionary adaptation that fine-tunes lytic reactivation. Cell Host Microbe 6: 570–575 doi:10.1016/j.chom.2009.11.008

34. MuniyappaMK, DowlingP, HenryM, MeleadyP, DoolanP, et al. (2009) MiRNA-29a regulates the expression of numerous proteins and reduces the invasiveness and proliferation of human carcinoma cell lines. Eur J Cancer 45: 3104–3118 doi:10.1016/j.ejca.2009.09.014

35. BaekD, VillénJ, ShinC, CamargoFD, GygiSP, et al. (2008) The impact of microRNAs on protein output. Nature 455: 64–71 doi:10.1038/nature07242

36. MukherjiS, EbertMS, ZhengGXY, TsangJS, SharpPA, et al. (2011) MicroRNAs can generate thresholds in target gene expression. Nat Genet 43: 854–859 doi:10.1038/ng.905

37. HirschDS, ShenY, WuWJ (2006) Growth and motility inhibition of breast cancer cells by epidermal growth factor receptor degradation is correlated with inactivation of Cdc42. Cancer Research 66: 3523–3530 doi:10.1158/0008-5472.CAN-05-1547

38. TanY-HC, KrishnaswamyS, NandiS, KantetiR, VoraS, et al. (2010) CBL is frequently altered in lung cancers: its relationship to mutations in MET and EGFR tyrosine kinases. PLoS ONE 5: e8972 doi:10.1371/journal.pone.0008972

39. VialE, SahaiE, MarshallCJ (2003) ERK-MAPK signaling coordinately regulates activity of Rac1 and RhoA for tumor cell motility. Cancer Cell 4: 67–79 doi:10.1016/S1535-6108(03)00162-4

40. AmbrosV (2010) MicroRNAs: genetically sensitized worms reveal new secrets. Curr Biol 20: R598–R600 doi:10.1016/j.cub.2010.05.054

41. KleinDE, NappiVM, ReevesGT, ShvartsmanSY, LemmonMA (2004) Argos inhibits epidermal growth factor receptor signalling by ligand sequestration. Nature 430: 1040–1044 doi:10.1038/nature02840

42. FreemanM (1997) Cell determination strategies in the Drosophila eye. Development 124: 261–270.

43. BejaranoF, Bortolamiol-BecetD, DaiQ, SunK, SajA, et al. (2012) A genome-wide transgenic resource for conditional expression of Drosophila microRNAs. Development 139: 2821–2831 doi:10.1242/dev.079939

44. GebeshuberCA, ZatloukalK, MartinezJ (2009) miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep 10: 400–405 doi:10.1038/embor.2009.9

45. TumanengK, SchlegelmilchK, RussellRC, YimlamaiD, BasnetH, et al. (2012) YAP mediates crosstalk between the Hippo and PI(3)K–TOR pathways by suppressing PTEN via miR-29. Nat Cell Biol 14: 1322–1329 doi:10.1038/ncb2615

46. KincaidRP, BurkeJM, SullivanCS (2012) RNA virus microRNA that mimics a B-cell oncomiR. Proc Natl Acad Sci USA 109: 3077–3082 doi:10.1073/pnas.1116107109

47. MottJL, KobayashiS, BronkSF, GoresGJ (2007) mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 26: 6133–6140 doi:10.1038/sj.onc.1210436

48. AnastasiadouE, BoccellatoF, VincentiS, RosatoP, BozzoniI, et al. (2010) Epstein-Barr virus encoded LMP1 downregulates TCL1 oncogene through miR-29b. Oncogene 29: 1316–1328 doi:10.1038/onc.2009.439

49. ParkS-Y, LeeJH, HaM, NamJ-W, KimVN (2009) miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol 16: 23–29 doi:10.1038/nsmb.1533

50. BaeHJ, NohJH, KimJK, EunJW, JungKH, et al. (2013) MicroRNA-29c functions as a tumor suppressor by direct targeting oncogenic SIRT1 in hepatocellular carcinoma. Oncogene 33: 2557–67 doi:10.1038/onc.2013.216

51. BuenoMJ, Gómez de CedrónM, LaresgoitiU, Fernández-PiquerasJ, ZubiagaAM, et al. (2010) Multiple E2F-induced microRNAs prevent replicative stress in response to mitogenic signaling. Molecular and Cellular Biology 30: 2983–2995 doi:10.1128/MCB.01372-09

52. MarziMJ, PuggioniEMR, Dall'OlioV, BucciG, BernardL, et al. (2012) Differentiation-associated microRNAs antagonize the Rb-E2F pathway to restrict proliferation. J Cell Biol 199: 77–95 doi:10.1083/jcb.201206033

53. DaneshvarK, NathS, KhanA, ShoverW, RichardsonC, et al. (2013) MicroRNA miR-308 regulates dMyc through a negative feedback loop in Drosophila. Biol Open 2: 1–9 doi:10.1242/bio.20122725

54. ParksAL, CookKR, BelvinM, DompeNA, FawcettR, et al. (2004) Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nat Genet 36: 288–292 doi:10.1038/ng1312

55. HaleyB, HendrixD, TrangV, LevineM (2008) A simplified miRNA-based gene silencing method for Drosophila melanogaster. Dev Biol 321: 482–490 doi:10.1016/j.ydbio.2008.06.015

56. RubyJG, StarkA, JohnstonWK, KellisM, BartelDP, et al. (2007) Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Research 17: 1850–1864 doi:10.1101/gr.6597907

57. Schnall-LevinM, ZhaoY, PerrimonN, BergerB (2010) Conserved microRNA targeting in Drosophila is as widespread in coding regions as in 3′UTRs. Proc Natl Acad Sci USA 107: 15751–15756 doi:10.1073/pnas.1006172107

58. KerteszM, IovinoN, UnnerstallU, GaulU, SegalE (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39: 1278–1284 doi:10.1038/ng2135

59. EnrightAJ, JohnB, GaulU, TuschlT, SanderC, et al. (2003) MicroRNA targets in Drosophila. Genome Biol 5: R1 doi:10.1186/gb-2003-5-1-r1

60. RehmsmeierM, SteffenP, HÖchsmannM, GiegerichR (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10: 1507–1517 doi:10.1261/rna.5248604

61. LewisBP, BurgeCB, BartelDP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15–20 doi:10.1016/j.cell.2004.12.035

62. GautierL, CopeL, BolstadBM, IrizarryRA (2004) affy–analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20: 307–315 doi:10.1093/bioinformatics/btg405

63. SmythGK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article3 doi:10.2202/1544-6115.1027

64. Perez-LlamasC, López-BigasN (2011) Gitools: analysis and visualisation of genomic data using interactive heat-maps. PLoS ONE 6: e19541 doi:10.1371/journal.pone.0019541

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#