#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Case for Junk DNA


article has not abstract


Vyšlo v časopise: The Case for Junk DNA. PLoS Genet 10(5): e32767. doi:10.1371/journal.pgen.1004351
Kategorie: Viewpoints
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004351

Souhrn

article has not abstract


Zdroje

1. BirneyE, StamatoyannopoulosJA, DuttaA, GuigóR, GingerasTR, et al. (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447: 799–816 doi:10.1038/nature05874

2. ENCODE Project Consortium (2012) BernsteinBE, BirneyE, DunhamI, GreenED, et al. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489: 57–74 doi:10.1038/nature11247

3. EckerJR, BickmoreWA, BarrosoI, PritchardJK, GiladY, et al. (2012) Genomics: ENCODE explained. Nature 489: 52–55 doi:10.1038/489052a

4. PennisiE (2012) Genomics. ENCODE project writes eulogy for junk DNA. Science 337: 1159, doi:10.1126/science.337.6099.1159

5. EddySR (2012) The C-value paradox, junk DNA and ENCODE. Curr Biol CB 22: R898–899 doi:10.1016/j.cub.2012.10.002

6. GraurD, ZhengY, PriceN, AzevedoRBR, ZufallRA, et al. (2013) On the immortality of television sets: “function” in the human genome according to the evolution-free gospel of ENCODE. Genome Biol Evol 5: 578–590 doi:10.1093/gbe/evt028

7. DoolittleWF (2013) Is junk DNA bunk? A critique of ENCODE. Proc Natl Acad Sci U S A 110: 5294–5300 doi:10.1073/pnas.1221376110

8. NiuD-K, JiangL (2013) Can ENCODE tell us how much junk DNA we carry in our genome? Biochem Biophys Res Commun 430: 1340–1343 doi:10.1016/j.bbrc.2012.12.074

9. ElliottTA, LinquistS, GregoryTR (2014) Conceptual and empirical challenges of ascribing functions to transposable elements. Am Nat In press.

10. Aronson AI, Bolton ET, Britten RJ, Cowie DB, Duerksen JD, et al.. (1960) Biophysics. Year book - Carnegie Institution of Washington (1960). Volume 59. Baltimore, MD: Lord Baltimore Press. pp. 229–289.

11. EhertCF, de HallerG (1963) Origin, development, and maturation of organelles and organelle systems of the cell surface in Paramecium. J Ultrastruct Res 23: SUPPL6: 1–42.

12. Graur D (2013) The Origin of Junk DNA: A Historical Whodunnit. Judge Starling. Available: http://judgestarling.tumblr.com/post/64504735261/the-origin-of-junk-dna-a-historical-whodunnit. Accessed 23 December 2013.

13. Ohno S (1972) So much “junk” DNA in our genome. In: Smith HH, editor. Evolution of Genetic Systems. New York: Gordon and Breach. pp. 366–370.

14. Ohno S (1970) Evolution by gene duplication. London, New York: Allen & Unwin; Springer-Verlag. 160 p.

15. ComingsDE (1972) The structure and function of chromatin. Adv Hum Genet 3: 237–431.

16. BrittenRJ, KohneDE (1968) Repeated sequences in DNA. Science 161: 529–540.

17. Gregory TR (2008) Junk DNA – the quotes of interest series. Available: http://www.genomicron.evolverzone.com/2008/02/junk-dna-quotes-of-interest-series/. Accessed 10 April 2014.

18. Gregory TR (2013) Animal Genome Size Database. Available: http://www.genomesize.com. Accessed 10 April 2014.

19. Bennett MD, Leitch IJ (2012) Plant DNA C-values Database (Release 6.0, Dec. 2012). Available: http://data.kew.org/cvalues/. Accessed 10 April 2014.

20. Gregory TR (2007) The onion test. Available: http://www.genomicron.evolverzone.com/2007/04/onion-test/. Accessed 10 April 2014.

21. RicrochA, YocktengR, BrownSC, NadotS (2005) Evolution of genome size across some cultivated Allium species. Genome Natl Res Counc Can Génome Cons Natl Rech Can 48: 511–520 doi:10.1139/g05-017

22. OrgelLE, CrickFH (1980) Selfish DNA: the ultimate parasite. Nature 284: 604–607.

23. DoolittleWF, SapienzaC (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284: 601–603.

24. GregoryTR (2005) Synergy between sequence and size in large-scale genomics. Nat Rev Genet 6: 699–708 doi:10.1038/nrg1674

25. De KoningAPJ, GuW, CastoeTA, BatzerMA, PollockDD (2011) Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet 7: e1002384 doi:10.1371/journal.pgen.1002384

26. SunC, ShepardDB, ChongRA, López ArriazaJ, HallK, et al. (2012) LTR retrotransposons contribute to genomic gigantism in plethodontid salamanders. Genome Biol Evol 4: 168–183 doi:10.1093/gbe/evr139

27. MetcalfeCJ, FiléeJ, GermonI, JossJ, CasaneD (2012) Evolution of the Australian lungfish (Neoceratodus forsteri) genome: a major role for CR1 and L2 LINE elements. Mol Biol Evol 29: 3529–3539 doi:10.1093/molbev/mss159

28. CowleyM, OakeyRJ (2013) Transposable elements re-wire and fine-tune the transcriptome. PLoS Genet 9: e1003234 doi:10.1371/journal.pgen.1003234

29. KidwellMG, LischDR (2001) Perspective: transposable elements, parasitic DNA, and genome evolution. Evol Int J Org Evol 55: 1–24.

30. Scherer S (2008) A short guide to the human genome. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory Press. 173 p.

31. KunarsoG, ChiaN-Y, JeyakaniJ, HwangC, LuX, et al. (2010) Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat Genet 42: 631–634 doi:10.1038/ng.600

32. HemannMT, StrongMA, HaoLY, GreiderCW (2001) The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107: 67–77.

33. Torras-LlortM, Moreno-MorenoO, AzorínF (2009) Focus on the centre: the role of chromatin on the regulation of centromere identity and function. EMBO J 28: 2337–2348 doi:10.1038/emboj.2009.174

34. GazaveE, Marqués-BonetT, FernandoO, CharlesworthB, NavarroA (2007) Patterns and rates of intron divergence between humans and chimpanzees. Genome Biol 8: R21 doi:10.1186/gb-2007-8-2-r21

35. PeiB, SisuC, FrankishA, HowaldC, HabeggerL, et al. (2012) The GENCODE pseudogene resource. Genome Biol 13: R51 doi:10.1186/gb-2012-13-9-r51

36. ZhangZ, GersteinM (2004) Large-scale analysis of pseudogenes in the human genome. Curr Opin Genet Dev 14: 328–335 doi:10.1016/j.gde.2004.06.003

37. SalmenaL, PolisenoL, TayY, KatsL, PandolfiPP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146: 353–358 doi:10.1016/j.cell.2011.07.014

38. ZhengD, GersteinMB (2007) The ambiguous boundary between genes and pseudogenes: the dead rise up, or do they? Trends Genet 23: 219–224 doi:10.1016/j.tig.2007.03.003

39. WardLD, KellisM (2012) Evidence of abundant purifying selection in humans for recently acquired regulatory functions. Science 337: 1675–1678 doi:10.1126/science.1225057

40. PontingCP, HardisonRC (2011) What fraction of the human genome is functional? Genome Res 21: 1769–1776 doi:10.1101/gr.116814.110

41. Lindblad-TohK, GarberM, ZukO, LinMF, ParkerBJ, et al. (2011) A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478: 476–482 doi:10.1038/nature10530

42. CooperGM, StoneEA, AsimenosG (2005) NISC Comparative Sequencing Program (2005) GreenED, et al. (2005) Distribution and intensity of constraint in mammalian genomic sequence. Genome Res 15: 901–913 doi:10.1101/gr.3577405

43. BrayN, PachterL (2012) Comment on “Evidence of Abundant and Purifying Selection in Humans for Recently Acquired Regulatory Functions”. Cornell University Library arXiv:1212.3076 [q-bio.GN]. Available: http://arxiv.org/abs/1212.3076. Accessed 10 April 2014.

44. GreenP, EwingB (2013) Comment on “Evidence of abundant purifying selection in humans for recently acquired regulatory functions.”. Science 340: 682 doi:10.1126/science.1233195

45. WardLD, KellisM (2013) Response to comment on “Evidence of abundant purifying selection in humans for recently acquired regulatory functions.”. Science 340: 682 doi:10.1126/science.1233366

46. DjebaliS, DavisCA, MerkelA, DobinA, LassmannT, et al. (2012) Landscape of transcription in human cells. Nature 489: 101–108 doi:10.1038/nature11233

47. DerrienT, JohnsonR, BussottiG, TanzerA, DjebaliS, et al. (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22: 1775–1789 doi:10.1101/gr.132159.111

48. StewartAJ, HannenhalliS, PlotkinJB (2012) Why transcription factor binding sites are ten nucleotides long. Genetics 192: 973–985 doi:10.1534/genetics.112.143370

49. VernotB, StergachisAB, MauranoMT, VierstraJ, NephS, et al. (2012) Personal and population genomics of human regulatory variation. Genome Res 22: 1689–1697 doi:10.1101/gr.134890.111

50. LickwarCR, MuellerF, HanlonSE, McNallyJG, LiebJD (2012) Genome-wide protein-DNA binding dynamics suggest a molecular clutch for transcription factor function. Nature 484: 251–255 doi:10.1038/nature10985

51. BigginMD (2011) Animal transcription networks as highly connected, quantitative continua. Dev Cell 21: 611–626 doi:10.1016/j.devcel.2011.09.008

52. LiX, MacArthurS, BourgonR, NixD, PollardDA, et al. (2008) Transcription factors bind thousands of active and inactive regions in the Drosophila blastoderm. PLoS Biol 6: e27 doi:10.1371/journal.pbio.0060027

53. ParisM, KaplanT, LiXY, VillaltaJE, LottSE, et al. (2013) Extensive divergence of transcription factor binding in Drosophila embryos with highly conserved gene expression. PLoS Genet 9: e1003748 doi:10.1371/journal.pgen.1003748

54. SpitzF, FurlongEEM (2012) Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 13: 613–626 doi:10.1038/nrg3207

55. Lynch M (2007) The origins of genome architecture. Sunderland Mass.: Sinauer Associates. 494 p.

56. KimuraM (1968) Evolutionary rate at the molecular level. Nature 217: 624–626.

57. KingJL, JukesTH (1969) Non-Darwinian evolution. Science 164: 788–798.

58. OhtaT (1973) Slightly deleterious mutant substitutions in evolution. Nature 246: 96–98.

59. Kimura M (1984) The Neutral theory of molecular evolution. Cambridge [Cambridgeshire]; New York: Cambridge University Press. 367 p.

60. CharlesworthB (2009) Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation. Nat Rev Genet 10: 195–205 doi:10.1038/nrg2526

61. MullerHJ (1950) Our load of mutations. Am J Hum Genet 2: 111–176.

62. KnudsonAGJr (1979) Presidential address. Our load of mutations and its burden of disease. Am J Hum Genet 31: 401–413.

63. LynchM, ConeryJ, BurgerR (1995) Mutational meltdowns in sexual populations. Evolution 49: 1067–1080.

64. KeightleyPD (2012) Rates and fitness consequences of new mutations in humans. Genetics 190: 295–304 doi:10.1534/genetics.111.134668

65. ScallyA, DurbinR (2012) Revising the human mutation rate: implications for understanding human evolution. Nat Rev Genet 13: 745–753 doi:10.1038/nrg3295

66. LesecqueY, KeightleyPD, Eyre-WalkerA (2012) A resolution of the mutation load paradox in humans. Genetics 191: 1321–1330 doi:10.1534/genetics.112.140343

67. EoryL, HalliganDL, KeightleyPD (2010) Distributions of selectively constrained sites and deleterious mutation rates in the hominid and murid genomes. Mol Biol Evol 27: 177–192 doi:10.1093/molbev/msp219

68. ReedFA, AkeyJM, AquadroCF (2005) Fitting background-selection predictions to levels of nucleotide variation and divergence along the human autosomes. Genome Res 15: 1211–1221 doi:10.1101/gr.3413205

69. GouldSJ (1994) The evolution of life on the earth. Sci Am 271: 84–91.

70. SaganL (1967) On the origin of mitosing cells. J Theor Biol 14: 255–274.

71. WoeseCR (1977) Endosymbionts and mitochondrial origins. J Mol Evol 10: 93–96.

72. MartinW (2003) Gene transfer from organelles to the nucleus: frequent and in big chunks. Proc Natl Acad Sci U S A 100: 8612–8614 doi:10.1073/pnas.1633606100

73. FeratJL, MichelF (1993) Group II self-splicing introns in bacteria. Nature 364: 358–361 doi:10.1038/364358a0

74. JarrellKA, DietrichRC, PerlmanPS (1988) Group II intron domain 5 facilitates a trans-splicing reaction. Mol Cell Biol 8: 2361–2366.

75. StoltzfusA (1999) On the possibility of constructive neutral evolution. J Mol Evol 49: 169–181.

76. HickeyDA, BenkelBF, AbukashawaSM (1989) A general model for the evolution of nuclear pre-mRNA introns. J Theor Biol 137: 41–53.

77. MartinW, KooninEV (2006) Introns and the origin of nucleus-cytosol compartmentalization. Nature 440: 41–45 doi:10.1038/nature04531

78. ToorN, KeatingKS, TaylorSD, PyleAM (2008) Crystal structure of a self-spliced group II intron. Science 320: 77–82 doi:10.1126/science.1153803

79. KeatingKS, ToorN, PerlmanPS, PyleAM (2010) A structural analysis of the group II intron active site and implications for the spliceosome. RNA 16: 1–9 doi:10.1261/rna.1791310

80. HetzerM, WurzerG, SchweyenRJ, MuellerMW (1997) Trans-activation of group II intron splicing by nuclear U5 snRNA. Nature 386: 417–420 doi:10.1038/386417a0

81. CaliBM, AndersonP (1998) mRNA surveillance mitigates genetic dominance in Caenorhabditis elegans. Mol Gen Genet 260: 176–184.

82. KhajaviM, InoueK, LupskiJR (2006) Nonsense-mediated mRNA decay modulates clinical outcome of genetic disease. Eur J Hum Genet 14: 1074–1081 doi:10.1038/sj.ejhg.5201649

83. LaneN, MartinW (2010) The energetics of genome complexity. Nature 467: 929–934 doi:10.1038/nature09486

84. LaneN (2011) Energetics and genetics across the prokaryote-eukaryote divide. Biol Direct 6: 35 doi:10.1186/1745-6150-6-35

85. MenetJS, RodriguezJ, AbruzziKC, RosbashM (2012) Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. eLife 1: e00011 doi:10.7554/eLife.00011

86. StruhlK (2007) Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat Struct Mol Biol 14: 103–105 doi:10.1038/nsmb0207-103

87. WhiteMA, MyersCA, CorboJC, CohenBA (2013) Massively parallel in vivo enhancer assay reveals that highly local features determine the cis-regulatory function of ChIP-seq peaks. Proc Natl Acad Sci U S A 110: 11952–11957 doi:10.1073/pnas.1307449110

88. CheungV, ChuaG, BatadaNN, LandryCR, MichnickSW, et al. (2008) Chromatin- and transcription-related factors repress transcription from within coding regions throughout the Saccharomyces cerevisiae genome. PLoS Biol 6: e277 doi:10.1371/journal.pbio.0060277

89. BuratowskiS (2008) Transcription. Gene expression–where to start? Science 322: 1804–1805 doi:10.1126/science.1168805

90. BabakT, BlencoweBJ, HughesTR (2005) A systematic search for new mammalian noncoding RNAs indicates little conserved intergenic transcription. BMC Genomics 6: 104 doi:10.1186/1471-2164-6-104

91. RamsköldD, WangET, BurgeCB, SandbergR (2009) An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data. PLoS Comput Biol 5: e1000598 doi:10.1371/journal.pcbi.1000598

92. Van BakelH, NislowC, BlencoweBJ, HughesTR (2010) Most “dark matter” transcripts are associated with known genes. PLoS Biol 8: e1000371 doi:10.1371/journal.pbio.1000371

93. WyersF, RougemailleM, BadisG, RousselleJ-C, DufourM-E, et al. (2005) Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 121: 725–737 doi:10.1016/j.cell.2005.04.030

94. DavisCA, AresMJr (2006) Accumulation of unstable promoter-associated transcripts upon loss of the nuclear exosome subunit Rrp6p in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 103: 3262–3267 doi:10.1073/pnas.0507783103

95. ThiebautM, Kisseleva-RomanovaE, RougemailleM, BoulayJ, LibriD (2006) Transcription termination and nuclear degradation of cryptic unstable transcripts: a role for the nrd1-nab3 pathway in genome surveillance. Mol Cell 23: 853–864 doi:10.1016/j.molcel.2006.07.029

96. ChekanovaJA, GregoryBD, ReverdattoSV, ChenH, KumarR, et al. (2007) Genome-wide high-resolution mapping of exosome substrates reveals hidden features in the Arabidopsis transcriptome. Cell 131: 1340–1353 doi:10.1016/j.cell.2007.10.056

97. VasiljevaL, KimM, TerziN, SoaresLM, BuratowskiS (2008) Transcription termination and RNA degradation contribute to silencing of RNA polymerase II transcription within heterochromatin. Mol Cell 29: 313–323 doi:10.1016/j.molcel.2008.01.011

98. PrekerP, NielsenJ, KammlerS, Lykke-AndersenS, ChristensenMS, et al. (2008) RNA exosome depletion reveals transcription upstream of active human promoters. Science 322: 1851–1854 doi:10.1126/science.1164096

99. MilliganL, DecourtyL, SaveanuC, RappsilberJ, CeulemansH, et al. (2008) A yeast exosome cofactor, Mpp6, functions in RNA surveillance and in the degradation of noncoding RNA transcripts. Mol Cell Biol 28: 5446–5457 doi:10.1128/MCB.00463-08

100. NeilH, MalabatC, d' Aubenton-CarafaY, XuZ, SteinmetzLM, et al. (2009) Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 457: 1038–1042 doi:10.1038/nature07747

101. XuZ, WeiW, GagneurJ, PerocchiF, Clauder-MünsterS, et al. (2009) Bidirectional promoters generate pervasive transcription in yeast. Nature 457: 1033–1037 doi:10.1038/nature07728

102. MasudaS, DasR, ChengH, HurtE, DormanN, et al. (2005) Recruitment of the human TREX complex to mRNA during splicing. Genes Dev 19: 1512–1517 doi:10.1101/gad.1302205

103. ChengH, DufuK, LeeC-S, HsuJL, DiasA, et al. (2006) Human mRNA export machinery recruited to the 5′ end of mRNA. Cell 127: 1389–1400 doi:10.1016/j.cell.2006.10.044

104. LuoMJ, ReedR (1999) Splicing is required for rapid and efficient mRNA export in metazoans. Proc Natl Acad Sci U S A 96: 14937–14942.

105. PalazzoAF, SpringerM, ShibataY, LeeC-S, DiasAP, et al. (2007) The signal sequence coding region promotes nuclear export of mRNA. PLoS Biol 5: e322 doi:10.1371/journal.pbio.0050322

106. ValenciaP, DiasAP, ReedR (2008) Splicing promotes rapid and efficient mRNA export in mammalian cells. Proc Natl Acad Sci U S A 105: 3386–3391 doi:10.1073/pnas.0800250105

107. ManiatisT, ReedR (2002) An extensive network of coupling among gene expression machines. Nature 416: 499–506 doi:10.1038/416499a

108. BuratowskiS (2009) Progression through the RNA polymerase II CTD cycle. Mol Cell 36: 541–546 doi:10.1016/j.molcel.2009.10.019

109. PeralesR, BentleyD (2009) “Cotranscriptionality”: the transcription elongation complex as a nexus for nuclear transactions. Mol Cell 36: 178–191 doi:10.1016/j.molcel.2009.09.018

110. MooreMJ, ProudfootNJ (2009) Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136: 688–700 doi:10.1016/j.cell.2009.02.001

111. PalazzoAF, AkefA (2012) Nuclear export as a key arbiter of “mRNA identity” in eukaryotes. Biochim Biophys Acta 1819: 566–577 doi:10.1016/j.bbagrm.2011.12.012

112. PalazzoA, MahadevanK, TarnawskyS (2013) ALREX-elements and introns: two identity elements that promote mRNA nuclear export. WIREs RNA 4: 523–533 doi:10.1002/wrna.1176

113. OhnoM, SegrefA, KuerstenS, MattajIW (2002) Identity elements used in export of mRNAs. Mol Cell 9: 659–671.

114. DiasAP, DufuK, LeiH, ReedR (2010) A role for TREX components in the release of spliced mRNA from nuclear speckle domains. Nat Commun 1: 97 doi:10.1038/ncomms1103

115. LeiH, DiasAP, ReedR (2011) Export and stability of naturally intronless mRNAs require specific coding region sequences and the TREX mRNA export complex. Proc Natl Acad Sci U S A 108: 17985–17990 doi:10.1073/pnas.1113076108

116. HuangY, SteitzJA (2001) Splicing factors SRp20 and 9G8 promote the nucleocytoplasmic export of mRNA. Mol Cell 7: 899–905.

117. CuljkovicB, TopisirovicI, SkrabanekL, Ruiz-GutierrezM, BordenKLB (2006) eIF4E is a central node of an RNA regulon that governs cellular proliferation. J Cell Biol 175: 415–426 doi:10.1083/jcb.200607020

118. LeiH, ZhaiB, YinS, GygiS, ReedR (2012) Evidence that a consensus element found in naturally intronless mRNAs promotes mRNA export. Nucleic Acids Res doi:10.1093/nar/gks1314

119. KimuraT, HashimotoI, NishizawaM, ItoS, YamadaH (2010) Novel cis-active structures in the coding region mediate CRM1-dependent nuclear export of IFN-α 1 mRNA. Med Mol Morphol 43: 145–157 doi:10.1007/s00795-010-0492-5

120. MattickJS, DingerME (2013) The extent of functionality in the human genome. HUGO J 7: 2 doi:10.1186/1877-6566-7-2

121. TisseurM, KwapiszM, MorillonA (2011) Pervasive transcription - Lessons from yeast. Biochimie 93: 1889–1896 doi:10.1016/j.biochi.2011.07.001

122. MoazedD (2009) Small RNAs in transcriptional gene silencing and genome defence. Nature 457: 413–420 doi:10.1038/nature07756

123. BartolomeiMS, ZemelS, TilghmanSM (1991) Parental imprinting of the mouse H19 gene. Nature 351: 153–155 doi:10.1038/351153a0

124. KobayashiT, GanleyARD (2005) Recombination regulation by transcription-induced cohesin dissociation in rDNA repeats. Science 309: 1581–1584 doi:10.1126/science.1116102

125. Tan-WongSM, ZauggJB, CamblongJ, XuZ, ZhangDW, et al. (2012) Gene loops enhance transcriptional directionality. Science 338: 671–675 doi:10.1126/science.1224350

126. ØromUA, DerrienT, BeringerM, GumireddyK, GardiniA, et al. (2010) Long Noncoding RNAs with Enhancer-like Function in Human Cells. Cell 143: 46–58 doi:10.1016/j.cell.2010.09.001

127. AnderssonR, GebhardC, Miguel-EscaladaI, HoofI, BornholdtJ, et al. (2014) An atlas of active enhancers across human cell types and tissues. Nature 507: 455–461 doi:10.1038/nature12787

128. BirdA (2013) Genome biology: not drowning but waving. Cell 154: 951–952 doi:10.1016/j.cell.2013.08.010

129. MortazaviA, WilliamsBA, McCueK, SchaefferL, WoldB (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5: 621–628 doi:10.1038/nmeth.1226

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#