#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Genes That Bias Mendelian Segregation


Chromosome segregation during meiosis ensures that paternal and maternal chromosomes are equally transmitted to the progeny. Meiotic Drive Elements (MDs) are known to distort this 1∶1 ratio in many animal, plant, and fungal species by killing the gametes not carrying them. Most of the known MDs are complex genetic loci with separate genes for the killing activity and the resistance to said killing. Here, we report in a model fungus on two genes endowed with MD properties previously unreported. Both genes produce a single polypeptide and confer both killing and resistance. They exert their effect irrespective of their position in the genome. They can cross species barriers and promote bias in segregation in other species. As related genes are frequently observed in fungal genomes, we propose that they are representative of a novel kind of selfish genes that propagate by distorting the Mendel laws of segregation.


Vyšlo v časopise: Genes That Bias Mendelian Segregation. PLoS Genet 10(5): e32767. doi:10.1371/journal.pgen.1004387
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004387

Souhrn

Chromosome segregation during meiosis ensures that paternal and maternal chromosomes are equally transmitted to the progeny. Meiotic Drive Elements (MDs) are known to distort this 1∶1 ratio in many animal, plant, and fungal species by killing the gametes not carrying them. Most of the known MDs are complex genetic loci with separate genes for the killing activity and the resistance to said killing. Here, we report in a model fungus on two genes endowed with MD properties previously unreported. Both genes produce a single polypeptide and confer both killing and resistance. They exert their effect irrespective of their position in the genome. They can cross species barriers and promote bias in segregation in other species. As related genes are frequently observed in fungal genomes, we propose that they are representative of a novel kind of selfish genes that propagate by distorting the Mendel laws of segregation.


Zdroje

1. PennisiE (2003) Meiotic drive. Bickering genes shape evolution. Science 301: 1837–1839.

2. SaupeSJ (2012) A fungal gene reinforces Mendel's laws by counteracting genetic cheating. Proc Natl Acad Sci U S A 109: 11900–11901.

3. LarracuenteAM, PresgravesDC (2012) The Selfish Segregation Distorter Gene Complex of Drosophila melanogaster. Genetics 192: 33–53.

4. SandlerL, HiraizumiY, SandlerI (1959) Meiotic Drive in Natural Populations of Drosophila Melanogaster. I. the Cytogenetic Basis of Segregation-Distortion. Genetics 44: 233–250.

5. LyonMF (2003) Transmission ratio distortion in mice. Annu Rev Genet 37: 393–408.

6. BauerH, SchindlerS, CharronY, WillertJ, KusecekB, et al. (2012) The nucleoside diphosphate kinase gene Nme3 acts as quantitative trait locus promoting non-Mendelian inheritance. PLoS Genet 8: e1002567.

7. Dobrovolskaia-ZavadskaiaN (1927) Sur la mortification spontanee de la queue chez la souris nouveau-nee et sur l'existence d'un caractere (facteur) hereditaire “non-viable”. C R Seances Soc Biol Fil 97: 114–116.

8. YangJ, ZhaoX, ChengK, DuH, OuyangY, et al. (2012) A killer-protector system regulates both hybrid sterility and segregation distortion in rice. Science 337: 1336–1340.

9. ChenJ, DingJ, OuyangY, DuH, YangJ, et al. (2008) A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica-japonica hybrids in rice. Proc Natl Acad Sci U S A 105: 11436–11441.

10. KusanoA, StaberC, GanetzkyB (2002) Segregation distortion induced by wild-type RanGAP in Drosophila. Proc Natl Acad Sci U S A 99: 6866–6870.

11. HerrmannBG, KoschorzB, WertzK, McLaughlinKJ, KispertA (1999) A protein kinase encoded by the t complex responder gene causes non-mendelian inheritance. Nature 402: 141–146.

12. RajuN (1994) Ascomycetes Spore killers: Chromosomal elements that distort genetic ratios among the products of meiosis. Mycologia 86: 461–473.

13. TurnerBC, PerkinsDD (1979) Spore killer, a chromosomal factor in Neurospora that kills meiotic products not containing it. Genetics 93: 587–606.

14. HammondTM, RehardDG, XiaoH, ShiuPK (2012) Molecular dissection of Neurospora Spore killer meiotic drive elements. Proc Natl Acad Sci U S A 109: 12093–12098.

15. van der GaagM, DebetsAJ, OosterhofJ, SlakhorstM, ThijssenJA, et al. (2000) Spore-killing meiotic drive factors in a natural population of the fungus Podospora anserina. Genetics 156: 593–605.

16. DalstraHJP, SwartK, DebetsAJM, SaupeSJ, HoekstraRF (2003) Sexual transmission of the [Het-s] prion leads to meiotic drive in Podospora anserina. Proc Natl Acad Sci U S A 100: 6616–6621.

17. PadieuE, BernetJ (1967) Mode d'action des gènes responsables de l'avortement de certains produits de la méiose chez l'Ascomycète Podospora anserina. C R Acad Sci Paris 264: 2300–2303.

18. EspagneE, LespinetO, MalagnacF, Da SilvaC, JaillonO, et al. (2008) The genome sequence of the model ascomycete fungus Podospora anserina. Genome Biol 9: R77.

19. CoppinE, SilarP (2007) Identification of PaPKS1, a polyketide synthase involved in melanin formation and its use as a genetic tool in Podospora anserina. Mycol Res 111: 901–908.

20. HortonP, ParkKJ, ObayashiT, FujitaN, HaradaH, et al. (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35: W585–587.

21. GalaganJE, SelkerEU (2004) RIP: the evolutionary cost of genome defense. Trends Genet 20: 417–423.

22. TurnerBC (2001) Geographic distribution of Neurospora spore killer strains and strains resistant to killing. Fungal Genet Biol 32: 93–104.

23. HamannA, OsiewaczHD (2004) Genetic analysis of spore killing in the filamentous ascomycete Podospora anserina. Fungal Genetics and Biology 41: 1088–1098.

24. PuntaM, CoggillPC, EberhardtRY, MistryJ, TateJ, et al. (2012) The Pfam protein families database. Nucleic Acids Res 40: D290–D301.

25. BeckettA, WilsonIM (1968) Ascus cytology of Podospora anserina. J Gen Microbiol 53: 81–87.

26. Thompson-CoffeC, ZicklerD (1994) How the cytoskeleton recognizes and sorts nuclei of opposite mating type during the sexual cycle in filamentous ascomycetes. Dev Biol 165: 257–271.

27. HanlinRT (1971) Morphology of Nectria haematococca. Am J Bot 58: 105–116.

28. BreinigF, SendzikT, EisfeldK, SchmittMJ (2006) Dissecting toxin immunity in virus-infected killer yeast uncovers an intrinsic strategy of self-protection. Proc Natl Acad Sci U S A 103: 3810–3815.

29. LalucqueH, MalagnacF, BrunS, KickaS, SilarP (2012) A Non-Mendelian MAPK-Generated Hereditary Unit Controlled by a Second MAPK Pathway in Podospora anserina. Genetics 191: 419–433.

30. GrognetP, LalucqueH, SilarP (2012) The PaAlr1 magnesium transporter is required for ascospore development in Podospora anserina. Fung Biol 116: 1111–1118.

31. SilarP (1995) Two new easy-to-use vectors for transformations. Fungal Genet Newsl 42: 73.

32. KatohK, TohH (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9: 286–298.

33. WaterhouseAM, ProcterJB, MartinDMA, ClampM, BartonGJ (2009) Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25: 1189–1191.

34. GuindonS, GascuelO (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696–704.

35. DereeperA, GuignonV, BlancG, AudicS, BuffetS, et al. (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36: W465–469.

36. LetunicI, BorkP (2007) Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23: 127–128.

37. CarverTJ, RutherfordKM, BerrimanM, RajandreamMA, BarrellBG, et al. (2005) ACT: the Artemis Comparison Tool. Bioinformatics 21: 3422–3423.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#