#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Paternal Poly (ADP-ribose) Metabolism Modulates Retention of Inheritable Sperm Histones and Early Embryonic Gene Expression


That not all histones are replaced by protamines in the sperm nucleus during spermiogenesis has been known for almost three decades, along with the notion that protamines do not bear any specific epigenetic information whereas histones typically carry posttranslational modifications with epigenetic regulatory functions. The enrichment of histones with distinct epigenetic modifications around transcriptional start sites, as well as unmethylated GC-rich promoter regions and exons in murine and human sperm, has recently been demonstrated by others at high resolution. The evolutionary conservation of the common principles underlying sperm histone retention provides a plausible rationale for epigenetic inheritance by nucleosomes. The present study takes a different approach towards testing the overarching hypothesis that sperm histones are linked to early embryonic gene expression by analyzing expression of genes in 2-cell embryos originating from sperm in which gene histone association of these genes was experimentally altered. The results are consistent with the aforementioned hypothesis and support the view of sperm histones as potential mediators of epigenetic inheritance through the male germ line, which could also contribute to phenotypic variation in mammals in response to environmental or dietary factors that affect sensitive chromatin-modulating pathways such as PAR metabolism.


Vyšlo v časopise: Paternal Poly (ADP-ribose) Metabolism Modulates Retention of Inheritable Sperm Histones and Early Embryonic Gene Expression. PLoS Genet 10(5): e32767. doi:10.1371/journal.pgen.1004317
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004317

Souhrn

That not all histones are replaced by protamines in the sperm nucleus during spermiogenesis has been known for almost three decades, along with the notion that protamines do not bear any specific epigenetic information whereas histones typically carry posttranslational modifications with epigenetic regulatory functions. The enrichment of histones with distinct epigenetic modifications around transcriptional start sites, as well as unmethylated GC-rich promoter regions and exons in murine and human sperm, has recently been demonstrated by others at high resolution. The evolutionary conservation of the common principles underlying sperm histone retention provides a plausible rationale for epigenetic inheritance by nucleosomes. The present study takes a different approach towards testing the overarching hypothesis that sperm histones are linked to early embryonic gene expression by analyzing expression of genes in 2-cell embryos originating from sperm in which gene histone association of these genes was experimentally altered. The results are consistent with the aforementioned hypothesis and support the view of sperm histones as potential mediators of epigenetic inheritance through the male germ line, which could also contribute to phenotypic variation in mammals in response to environmental or dietary factors that affect sensitive chromatin-modulating pathways such as PAR metabolism.


Zdroje

1. RiveraRM (2010) Epigenetic aspects of fertilization and preimplantation development in mammals: lessons from the mouse. Syst Biol Reprod Med 56: 388–404 doi:10.3109/19396368.2010.482726

2. BraunRE (2001) Packaging paternal chromosomes with protamine. Nat Genet 28: 10–12 doi:10.1038/88194

3. BalhornR (2007) The protamine family of sperm nuclear proteins. Genome Biol 8: 227 doi:10.1186/gb-2007-8-9-227

4. ArpanahiA, BrinkworthM, IlesD, KrawetzSA, ParadowskaA, et al. (2009) Endonuclease-sensitive regions of human spermatozoal chromatin are highly enriched in promoter and CTCF binding sequences. Genome Res 19: 1338–1349 doi:10.1101/gr.094953.109

5. BrykczynskaU, HisanoM, ErkekS, RamosL, OakeleyEJ, et al. (2010) Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol 17: 679–687 doi:10.1038/nsmb.1821

6. GatewoodJM, CookGR, BalhornR, BradburyEM, SchmidCW (1987) Sequence-specific packaging of DNA in human sperm chromatin. Science 236: 962–964.

7. HammoudSS, PurwarJ, PfluegerC, CairnsBR, CarrellDT (2009) Alterations in sperm DNA methylation patterns at imprinted loci in two classes of infertility. Fertil Steril 94: 1728–33 doi:10.1016/j.fertnstert.2009.09.010

8. ZalenskayaIA, BradburyEM, ZalenskyAO (2000) Chromatin structure of telomere domain in human sperm. Biochem Biophys Res Commun 279: 213–218 doi:10.1006/bbrc.2000.3917

9. PittoggiC, RenziL, ZaccagniniG, CiminiD, DegrassiF, et al. (1999) A fraction of mouse sperm chromatin is organized in nucleosomal hypersensitive domains enriched in retroposon DNA. J Cell Sci 112 (Pt 20) 3537–3548.

10. Gardiner-GardenM, BallesterosM, GordonM, TamPP (1998) Histone- and protamine-DNA association: conservation of different patterns within the beta-globin domain in human sperm. Mol Cell Biol 18: 3350–3356.

11. KimminsS, Sassone-CorsiP (2005) Chromatin remodelling and epigenetic features of germ cells. Nature 434: 583–589 doi:10.1038/nature03368

12. WykesSM, KrawetzSA (2003) The structural organization of sperm chromatin. J Biol Chem 278: 29471–29477 doi:10.1074/jbc.M304545200

13. ErkekS, HisanoM, LiangC-Y, GillM, MurrR, et al. (2013) Molecular determinants of nucleosome retention at CpG-rich sequences in mouse spermatozoa. Nat Struct Mol Biol 20: 1236 doi:10.1038/nsmb1013-1236b

14. Van der HeijdenGW, RamosL, BaartEB, van den BergIM, DerijckAA, et al. (2008) Sperm-derived histones contribute to zygotic chromatin in humans. BMC Dev Biol 8: 34 doi:10.1186/1471-213X-8-34

15. Van der HeijdenGW, DerijckAA, RamosL, GieleM, van der VlagJ, et al. (2006) Transmission of modified nucleosomes from the mouse male germline to the zygote and subsequent remodeling of paternal chromatin. Dev Biol 298: 458–469 doi:10.1016/j.ydbio.2006.06.051

16. BurtonA, Torres-PadillaME (2010) Epigenetic reprogramming and development: a unique heterochromatin organization in the preimplantation mouse embryo. Brief Funct Genomics 9: 444–454 doi:10.1093/bfgp/elq027

17. FeilR (2009) Epigenetic asymmetry in the zygote and mammalian development. Int J Dev Biol 53: 191–201 doi:10.1387/ijdb.082654rf

18. SantosF, PetersAH, OtteAP, ReikW, DeanW (2005) Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Dev Biol 280: 225–236 doi:10.1016/j.ydbio.2005.01.025

19. MillerD, BrinkworthM, IlesD (2010) Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reprod Camb Engl 139: 287–301 doi:10.1530/REP-09-0281

20. GatewoodJM, CookGR, BalhornR, SchmidCW, BradburyEM (1990) Isolation of four core histones from human sperm chromatin representing a minor subset of somatic histones. J Biol Chem 265: 20662–20666.

21. NakamuraT, AraiY, UmeharaH, MasuharaM, KimuraT, et al. (2007) PGC7/Stella protects against DNA demethylation in early embryogenesis. Nat Cell Biol 9: 64–71 doi:10.1038/ncb1519

22. GuTP, GuoF, YangH, WuHP, XuGF, et al. (2011) The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477: 606–610 doi:10.1038/nature10443

23. HajkovaP (2010) Epigenetic reprogramming–taking a lesson from the embryo. Curr Opin Cell Biol 22: 342–350 doi:10.1016/j.ceb.2010.04.011

24. HalesBF, GrenierL, LalancetteC, RobaireB (2011) Epigenetic programming: from gametes to blastocyst. Birth Defects Res Clin Mol Teratol 91: 652–665 doi:10.1002/bdra.20781

25. JohnsonGD, LalancetteC, LinnemannAK, LeducF, BoissonneaultG, et al. (2011) The sperm nucleus: chromatin, RNA, and the nuclear matrix. Reprod Camb Engl 141: 21–36 doi:10.1530/REP-10-0322

26. Meyer-FiccaML, ScherthanH, BurkleA, MeyerRG (2005) Poly(ADP-ribosyl)ation during chromatin remodeling steps in rat spermiogenesis. Chromosoma 114: 67–74 doi:10.1007/s00412-005-0344-6

27. Meyer-FiccaML, LoncharJD, IharaM, MeistrichML, AustinCA, et al. (2011) Poly(ADP-ribose) polymerases PARP1 and PARP2 modulate topoisomerase II beta (TOP2B) function during chromatin condensation in mouse spermiogenesis. Biol Reprod 84: 900–909 doi:10.1095/biolreprod.110.090035

28. Meyer-FiccaML, LoncharJ, CredidioC, IharaM, LiY, et al. (2009) Disruption of Poly(ADP-Ribose) Homeostasis Affects Spermiogenesis and Sperm Chromatin Integrity in Mice. Biol Reprod 81: 46–55 doi:10.1095/biolreprod.108.075390

29. Meyer-FiccaML, IharaM, LoncharJD, MeistrichML, AustinCA, et al. (2011) Poly(ADP-ribose) Metabolism Is Essential for Proper Nucleoprotein Exchange During Mouse Spermiogenesis. Biol Reprod 84: 218–228 doi:10.1095/biolreprod.110.087361

30. BianchiPG, ManicardiGC, BizzaroD, BianchiU, SakkasD (1993) Effect of deoxyribonucleic acid protamination on fluorochrome staining and in situ nick-translation of murine and human mature spermatozoa. Biol Reprod 49: 1083–1088.

31. SaidaM, IlesD, ElnefatiA, BrinkworthM, MillerD (2011) Key gene regulatory sequences with distinctive ontological signatures associate with differentially endonuclease-accessible mouse sperm chromatin. Reprod Camb Engl 142: 73–86 doi:10.1530/REP-10-0536

32. JohnsonWE, LiW, MeyerCA, GottardoR, CarrollJS, et al. (2006) Model-based analysis of tiling-arrays for ChIP-chip. Proc Natl Acad Sci U S A 103: 12457–12462 doi:10.1073/pnas.0601180103

33. Meyer-FiccaML, LoncharJD, IharaM, BaderJJ, MeyerRG (2013) Alteration of poly(ADP-ribose) metabolism affects murine sperm nuclear architecture by impairing pericentric heterochromatin condensation. Chromosoma 122: 319–335 doi:10.1007/s00412-013-0416-y

34. Huang daW, ShermanBT, LempickiRA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37: 1–13 doi:10.1093/nar/gkn923

35. Huang daW, ShermanBT, LempickiRA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44–57 doi:10.1038/nprot.2008.211

36. ZengF, BaldwinDA, SchultzRM (2004) Transcript profiling during preimplantation mouse development. Dev Biol 272: 483–496 doi:10.1016/j.ydbio.2004.05.018

37. ZengF, SchultzRM (2005) RNA transcript profiling during zygotic gene activation in the preimplantation mouse embryo. Dev Biol 283: 40–57 doi:10.1016/j.ydbio.2005.03.038

38. RousseauxS, KhochbinS (2012) Combined proteomic and in silico approaches to decipher post-meiotic male genome reprogramming in mice. Syst Biol Reprod Med 58: 191–196 doi:10.3109/19396368.2012.663055

39. VavouriT, LehnerB (2011) Chromatin organization in sperm may be the major functional consequence of base composition variation in the human genome. PLoS Genet 7: e1002036 doi:10.1371/journal.pgen.1002036

40. MolaroA, HodgesE, FangF, SongQ, McCombieWR, et al. (2011) Sperm methylation profiles reveal features of epigenetic inheritance and evolution in primates. Cell 146: 1029–1041 doi:10.1016/j.cell.2011.08.016

41. OlenderT, LancetD, NebertDW (2008) Update on the olfactory receptor (OR) gene superfamily. Hum Genomics 3: 87–97.

42. SerizawaS, MiyamichiK, SakanoH (2004) One neuron-one receptor rule in the mouse olfactory system. Trends Genet TIG 20: 648–653 doi:10.1016/j.tig.2004.09.006

43. SerizawaS, IshiiT, NakataniH, TsuboiA, NagawaF, et al. (2000) Mutually exclusive expression of odorant receptor transgenes. Nat Neurosci 3: 687–693 doi:10.1038/76641

44. MalnicB, HironoJ, SatoT, BuckLB (1999) Combinatorial receptor codes for odors. Cell 96: 713–723.

45. KrausWL (2008) Transcriptional control by PARP-1: chromatin modulation, enhancer-binding, coregulation, and insulation. Curr Opin Cell Biol 20: 294–302 doi:10.1016/j.ceb.2008.03.006

46. TulinA, ChinenovY, SpradlingA (2003) Regulation of chromatin structure and gene activity by poly(ADP-ribose) polymerases. Curr Top Dev Biol 56: 55–83.

47. LabergeRM, BoissonneaultG (2005) On the nature and origin of DNA strand breaks in elongating spermatids. Biol Reprod 73: 289–296 doi:10.1095/biolreprod.104.036939

48. LisJT, KrausWL (2006) Promoter cleavage: a topoIIbeta and PARP-1 collaboration. Cell 125: 1225–1227 doi:10.1016/j.cell.2006.06.016

49. YamauchiY, ShamanJA, WardWS (2010) Non-genetic contributions of the sperm nucleus to embryonic development. Asian J Androl doi:10.1038/aja.2010.75

50. FrizzellKM, GambleMJ, BerrocalJG, ZhangT, KrishnakumarR, et al. (2009) Global analysis of transcriptional regulation by poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase in MCF-7 human breast cancer cells. J Biol Chem 284: 33926–33938 doi:10.1074/jbc.M109.023879

51. Le MayN, IltisI, AméJ-C, ZhovmerA, BiardD, et al. (2012) Poly (ADP-ribose) glycohydrolase regulates retinoic acid receptor-mediated gene expression. Mol Cell 48: 785–798 doi:10.1016/j.molcel.2012.09.021

52. CortesU, TongWM, CoyleDL, Meyer-FiccaML, MeyerRG, et al. (2004) Depletion of the 110-kilodalton isoform of poly(ADP-ribose) glycohydrolase increases sensitivity to genotoxic and endotoxic stress in mice. Mol Cell Biol 24: 7163–7178 doi:10.1128/MCB.24.16.7163-7178.2004

53. KrishnakumarR, KrausWL (2010) PARP-1 regulates chromatin structure and transcription through a KDM5B-dependent pathway. Mol Cell 39: 736–749 doi:10.1016/j.molcel.2010.08.014

54. CaiafaP, ZlatanovaJ (2009) CCCTC-binding factor meets poly(ADP-ribose) polymerase-1. J Cell Physiol 219: 265–70 doi:10.1002/jcp.21691

55. FarrarD, RaiS, ChernukhinI, JagodicM, ItoY, et al. (2010) Mutational analysis of the poly(ADP-ribosyl)ation sites of the transcription factor CTCF provides an insight into the mechanism of its regulation by poly(ADP-ribosyl)ation. Mol Cell Biol 30: 1199–1216 doi:10.1128/MCB.00827-09

56. LuoX, KrausWL (2012) On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev 26: 417–432 doi:10.1101/gad.183509.111

57. CaroneBR, FauquierL, HabibN, SheaJM, HartCE, et al. (2010) Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143: 1084–1096 doi:10.1016/j.cell.2010.12.008

58. NgSF, LinRC, LaybuttDR, BarresR, OwensJA, et al. (2010) Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. Nature 467: 963–966 doi:10.1038/nature09491

59. LindemanLC, AndersenIS, ReinerAH, LiN, AanesH, et al. (2011) Prepatterning of Developmental Gene Expression by Modified Histones before Zygotic Genome Activation. Dev Cell 21: 993–1004 doi:10.1016/j.devcel.2011.10.008

60. GrantGR, FarkasMH, PizarroAD, LahensNF, SchugJ, et al. (2011) Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM). Bioinforma Oxf Engl 27: 2518–2528 doi:10.1093/bioinformatics/btr427

61. AndersS, HuberW (2010) Differential expression analysis for sequence count data. Genome Biol 11: R106 doi:10.1186/gb-2010-11-10-r106

62. NazarovIB, ShlyakhtenkoLS, LyubchenkoYL, ZalenskayaIA, ZalenskyAO (2008) Sperm chromatin released by nucleases. Syst Biol Reprod Med 54: 37–46 doi:10.1080/19396360701876849

63. OliverosJC (2007) VENNY. An interactive tool for comparing lists with Venn Diagrams http://bioinfogp.cnb.csic.es/tools/venny/index.html.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#