-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
G×G×E for Lifespan in : Mitochondrial, Nuclear, and Dietary Interactions that Modify Longevity
It is widely recognized that mitochondrial function plays an important role in longevity and healthy aging. Considerable attention has been focused on the extension of longevity by caloric or dietary restriction and mutations that alter this process, and these interventions commonly are associated with shifts in mitochondrial function. While the genetic bases of these effects are the focus of much interest, relatively little effort has been directed at understanding the role that mitochondrial DNA (mtDNA) polymorphisms play in the diet restriction response. This work presents a comprehensive effort to quantify the effects of mtDNA variants, nuclear genetic variants and dietary manipulations on longevity in Drosophila, with a focus on testing for the importance of the interactions among these factors. We found that mitochondrial genotypes can have significant effects on longevity and the diet restriction response but these effects are highly dependent on nuclear genetic (G) background and the specific diet environment (E). For example, a mitochondrial haplotype that shortens lifespan in one nuclear background or diet regime shows no such effect when the genetic background or diet regime is changed. Our experiments indicate that identifying individual mitochondrial, nuclear or dietary effects on longevity is unlikely to provide general results without quantifying the prevalent mitochondrial × nuclear × diet (G×G×E) interactions.
Vyšlo v časopise: G×G×E for Lifespan in : Mitochondrial, Nuclear, and Dietary Interactions that Modify Longevity. PLoS Genet 10(5): e32767. doi:10.1371/journal.pgen.1004354
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004354Souhrn
It is widely recognized that mitochondrial function plays an important role in longevity and healthy aging. Considerable attention has been focused on the extension of longevity by caloric or dietary restriction and mutations that alter this process, and these interventions commonly are associated with shifts in mitochondrial function. While the genetic bases of these effects are the focus of much interest, relatively little effort has been directed at understanding the role that mitochondrial DNA (mtDNA) polymorphisms play in the diet restriction response. This work presents a comprehensive effort to quantify the effects of mtDNA variants, nuclear genetic variants and dietary manipulations on longevity in Drosophila, with a focus on testing for the importance of the interactions among these factors. We found that mitochondrial genotypes can have significant effects on longevity and the diet restriction response but these effects are highly dependent on nuclear genetic (G) background and the specific diet environment (E). For example, a mitochondrial haplotype that shortens lifespan in one nuclear background or diet regime shows no such effect when the genetic background or diet regime is changed. Our experiments indicate that identifying individual mitochondrial, nuclear or dietary effects on longevity is unlikely to provide general results without quantifying the prevalent mitochondrial × nuclear × diet (G×G×E) interactions.
Zdroje
1. McCayCM, MaynardLA, SperlingG, BarnesLL (1939) Retarded growth, life span, ultitimate body size and age changes in the albino rat after feeding diets restricted in calories. Journal of Nutrition 18 : 1–13.
2. WeindruchR, WalfordRL, FligielS, GuthrieD (1986) The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. Journal of Nutrition 116 : 641–654.
3. BrossTG, RoginaB, HelfandSL (2005) Behavioral, physical, and demographic changes in Drosophila populations through dietary restriction. Aging Cell 4 : 309–317.
4. PartridgeL, GemsD (2002) Mechanisms of ageing: Public or private? Nature Reviews Genetics 3 : 165–175.
5. WalkerG, HouthoofdK, VanfleterenJR, GemsD (2005) Dietary restriction in C. elegans: From rate-of-living effects to nutrient sensing pathways. Mechanisms of Ageing and Development 126 : 929–937.
6. KenyonC (2005) The plasticity of aging: Insights from long-lived mutants. Cell 120 : 449–460.
7. TatarM, BartkeA, AntebiA (2003) The endocrine regulation of aging by insulin-like signals. Science 299 : 1346–1351.
8. SarbassovDD, AliSM, SabatiniDM (2005) Growing roles for the mTOR pathway. Current Opinion in Cell Biology 17 : 596–603.
9. TokunagaC, YoshinoK, YonezawaK (2004) mTOR integrates amino acid - and energy-sensing pathways. Biochemical and Biophysical Research Communications 313 : 443–446.
10. ZidBM, RogersAN, KatewaSD, VargasMA, KolipinskiMC, et al. (2009) 4E-BP Extends Lifespan upon Dietary Restriction by Enhancing Mitochondrial Activity in Drosophila. Cell 139 : 149–160.
11. CantoC, AuwerxJ (2009) PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Current Opinion in Lipidology 20 : 98–105.
12. CantoC, JiangLQ, DeshmukhAS, MatakiC, CosteA, et al. (2010) Interdependence of AMPK and SIRT1 for Metabolic Adaptation to Fasting and Exercise in Skeletal Muscle. Cell Metabolism 11 : 213–219.
13. KempBE, MitchelhillKI, StapletonD, MichellBJ, ChenZP, et al. (1999) Dealing with energy demand: the AMP activated protein kinase. Trends in Biochemical Sciences 24 : 22–25.
14. FinleyLWS, HaigisMC (2009) The coordination of nuclear and mitochondrial communication during aging and calorie restriction. Ageing Research Reviews 8 : 173–188.
15. CohenHY, MillerC, BittermanKJ, WallNR, HekkingB, et al. (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305 : 390–392.
16. GuarenteL, PicardF (2005) Calorie restriction - the SIR2 connection. Cell 120 : 473–482.
17. NemotoS, FergussonMM, FinkelT (2004) Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 306 : 2105–2108.
18. WoodJG, RoginaB, LavuS, HowitzK, HelfandSL, et al. (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430 : 686–689.
19. SchleitJ, JohnsonSC, BennettCF, SimkoM, TrongthamN, et al. (2013) Molecular mechanisms underlying genotype-dependent responses to dietary restriction. Aging Cell 12 : 1050–61.
20. HuangW, RichardsS, CarboneMA, ZhuD, AnholtRR, et al. (2012) Epistasis dominates the genetic architecture of Drosophila quantitative traits. Proceedings of the National Academy of Sciences of the United States of America 109 : 15553–15559.
21. LiaoCY, RikkeBA, JohnsonTE, DiazV, NelsonJF (2010) Genetic variation in the murine lifespan response to dietary restriction: from life extension to life shortening. Aging Cell 9 : 92–95.
22. FinleyLWS, LeeJ, SouzaA, Desquiret-DumasV, BullockK, et al. (2012) Skeletal muscle transcriptional coactivator PGC-1α mediates mitochondrial, but not metabolic, changes during calorie restriction. Proceedings of the National Academy of Sciences of the United States of America 109 : 2931–2936.
23. Lopez-LluchG, HuntN, JonesB, ZhuM, JamiesonH, et al. (2006) Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proceedings of the National Academy of Sciences of the United States of America 103 : 1768–1773.
24. HirscheyMD, ShimazuT, GoetzmanE, JingE, SchwerB, et al. (2010) SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464 : 121–U137.
25. QiuXL, BrownK, HirscheyMD, VerdinE, ChenD (2010) Calorie Restriction Reduces Oxidative Stress by SIRT3-Mediated SOD2 Activation. Cell Metabolism 12 : 662–667.
26. TaanmanJW (1999) The mitochondrial genome: structure, transcription, translation and replication. Biochimica Et Biophysica Acta-Bioenergetics 1410 : 103–123.
27. GuarenteL (2008) Mitochondria - A nexus for aging, calorie restriction, and sirtuins? Cell 132 : 171–176.
28. RandDM, FryA, SheldahlL (2006) Nuclear-mitochondrial epistasis and Drosophila aging: Introgression of Drosophila simulans mtDNA modifies longevity in D.melanogaster nuclear backgrounds. Genetics 172 : 329–341.
29. MeiklejohnCD, HolmbeckMA, SiddiqMA, AbtDN, RandDM, et al. (2013) An Incompatibility between a Mitochondrial tRNA and Its Nuclear-Encoded tRNA Synthetase Compromises Development and Fitness in Drosophila. PLoS Genetics 9(1): e1003238.
30. HoutkooperRH, MouchiroudL, RyuD, MoullanN, KatsyubaE, et al. (2013) Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497 : 451–457.
31. KapahiP, ZidBM, HarperT, KosloverD, SapinV, et al. (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Current Biology 14 : 885–890.
32. SarbassovDD, GuertinDA, AliSM, SabatiniDM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307 : 1098–1101.
33. ReraM, BahadoraniS, ChoJ, KoehlerCL, UlgheraitM, et al. (2010) Modulation of Longevity and Tissue Homeostasis by the Drosophila PGC-1 Homolog. Cell Metabolism 14 : 623–634.
34. BahadoraniS, HurJH, LoT, VuK, WalkerDW (2010) Perturbation of mitochondrial complex V alters the response to dietary restriction in Drosophila. Aging Cell 9 : 100–103.
35. SkorupaDA, DervisefendicA, ZwienerJ, PletcherSD (2008) Dietary composition specifies consumption, obesity, and lifespan in Drosophila melanogaster. Aging Cell 7 : 478–490.
36. GrandisonRC, WongR, BassTM, PartridgeL, PiperMDW (2009) Effect of a Standardised Dietary Restriction Protocol on Multiple Laboratory Strains of Drosophila melanogaster. PLoS One 4(1): e4067.
37. MairW, PiperMDW, PartridgeL (2005) Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biology 3(7): e223.
38. LeeKP, SimpsonSJ, ClissoldFJ, BrooksR, BallardJWO, et al. (2008) Lifespan and reproduction in Drosophila: New insights from nutritional geometry. Proceedings of the National Academy of Sciences of the United States of America 105 : 2498–2503.
39. MontoothKL, MeiklejohnCD, AbtDN, RandDM (2010) Mitochondrial-nuclear epistasis affects fitness within species but does not contribute to fixed incompatibilities between species of Drosophila. Evolution 64 : 3364–3379.
40. RoginaB, HelfandSL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proceedings of the National Academy of Sciences of the United States of America 101 : 15998–16003.
41. PulkesT, SiddiquiA, Morgan-HughesJA, HannaMG (2000) A novel mutation in the mitochondrial tRNATyr gene associated with exercise intolerance. Neurology 55 : 1210–1212.
42. RileyLG, CooperS, HickeyP, Rudinger-ThirionJ, McKenzieM, et al. (2010) Mutation of the mitochondrial tyrosyl-tRNA synthetase gene, YARS2, causes myopathy, lactic acidosis, and sideroblastic anemia—MLASA syndrome. American Journal of Human Genetics 87 : 52–59.
43. RaffelsbergerT, RossmanithW, Thaller-AntlangerH, BittnerRE (2001) CPEO associated with a single nucleotide deletion in the mitochondrial tRNATyr gene. Neurology 57 : 2298–2301.
44. SeibelP, DegoulF, RomeroN, MarsacC, KadenbachB (1990) Identification of point mutations by mispairing PCR as exemplified in MERRF disease. Biochemical and Biophysical Research Communications 173 : 561–565.
45. MoraesCT (2001) What regulates mitochondrial DNA copy number in animal cells? Trends in Genetics 17 : 199–205.
46. LeeHC, LiSH, LinJC, WuCC, YehDC, et al. (2004) Somatic mutations in the D-loop and decrease in the copy number of mitochondrial DNA in human hepatocellular carcinoma. Mutation Reseach 547 : 71–78.
47. HowitzKT, BittermanKJ, CohenHY, LammingDW, LavuS, et al. (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425 : 191–196.
48. KaeberleinM, McVeyM, GuarenteL (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes & Development 13 : 2570–2580.
49. TissenbaumHA, GuarenteL (2001) Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410 : 227–230.
50. LandryJ, SlamaJT, SternglanzR (2000) Role of NAD+ in the deacetylase activity of the SIR2-like proteins. Biochemical and Biophysical Research Communications 278 : 685–690.
51. LandryJ, SuttonA, TafrovST, HellerRC, StebbinsJ, et al. (2000) The silencing protein SIR2 and its homologs are MAD-dependent protein deacetylases. Proceedings of the National Academy of Sciences of the United States of America 97 : 5807–5811.
52. HebertAS, Dittenhafer-ReedKE, YuW, BaileyDJ, SelenES, et al. (2012) Calorie Restriction and SIRT3 Trigger Global Reprogramming of the Mitochondrial Protein Acetylome. Molecular Cell 49 : 186–199.
53. VerdinE, HirscheyMD, FinleyLWS, HaigisMC (2010) Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends in Biochemical Sciences 35 : 669–675.
54. ChapmanT, PartridgeL (1996) Female fitness in Drosophila melanogaster: An interaction between the effect of nutrition and of encounter rate with males. Proceedings of the Royal Society B-Biological Sciences 263 : 755–759.
55. MinKJ, TatarM (2006) Restriction of amino acids extends lifespan in Drosophila melanogaster. Mechanisms of Ageing and Development 127 : 643–646.
56. GuarenteL (2000) Sir2 links chromatin silencing, metabolism, and aging. Genes & Development 14 : 1021–1026.
57. BassTM, WeinkoveD, HouthoofdK, GemsD, PartridgeL (2007) Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mechanisms of Ageing and Development 128 : 546–552.
58. PacholecM, BleasdaleJE, ChrunykB, CunninghamD, FlynnD, et al. (2010) SRT1720, SRT2183, SRT1460, and Resveratrol Are Not Direct Activators of SIRT1. Journal of Biological Chemistry 285 : 8340–8351.
59. WalleT, HsiehF, DeLeggeMH, OatisJE, WalleUK (2004) High absorption but very low bioavailability of oral resveratrol in humans. Drug Metabolism and Disposition 32 : 1377–1382.
60. AstromSU, ClineTW, RineJ (2003) The Drosophila melanogaster sir2+ gene is nonessential and has only minor effects on position-effect variegation. Genetics 163 : 931–937.
61. BurnettC, ValentiniS, CabreiroF, GossM, SomogyvariM, et al. (2011) Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477 : 482–458.
62. GriswoldtAJ, ChangKT, RunkoAP, KnighttMA, MinKT (2008) Sir2 mediates apoptosis through JNK-dependent pathways in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 105 : 8673–8678.
63. NewmanBL, LundbladJR, ChenY, SmolikSM (2002) A Drosophila homologue of Sir2 modifies position-effect variegation but does not affect life span. Genetics 162 : 1675–1685.
64. WhitakerR, FaulknerS, MiyokawaR, BurhennL, Henriksen, etal (2013) Increase expression of Drosophila Sir2 extends lifespan in a dose-dependent manner. Aging (Albany NY) 5 : 682–691.
65. ChintapalliVR, WangJ, DowJAT (2007) Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nature Genetics 39 : 715–720.
66. RoyS, ErnstJ, KharchenkoPV, KheradpourP, NegreN, et al. (2010) Identification of Functional Elements and Regulatory Circuits by Drosophila modENCODE. Science 330 : 1787–1797.
67. BallardJWO (2000) Comparative genomics of mitochondrial DNA in members of the Drosophila melanogaster subgroup. Journal of Molecular Evolution 51 : 48–63.
68. BallardJWO (2000) Comparative genomics of mitochondrial DNA in Drosophila simulans. Journal of Molecular Evolution 51 : 64–75.
69. GuoW, JiangL, BhasinS, KhanSM, SwerdlowRH (2009) DNA extraction procedures meaningfully influence qPCR-based mtDNA copy number determination. Mitochondrion 9 : 261–265.
70. Therneau TM, Grambsch PM (2001) Modeling Survival Data: Extending the Cox Model; Dietz K, Gail M, Krickeberg K, Samet J, Tsiatis A, editors. New York: Springer-Verlag. 350 p.
71. RipattiS, PalmgrenJ (2000) Estimation of multivariate frailty models using penalized partial likelihood. Biometrics 56 : 1016–1022.
Štítky
Genetika Reprodukčná medicína
Článek Ribosomal Protein Mutations Induce Autophagy through S6 Kinase Inhibition of the Insulin PathwayČlánek Recent Mitochondrial DNA Mutations Increase the Risk of Developing Common Late-Onset Human DiseasesČlánek PINK1-Parkin Pathway Activity Is Regulated by Degradation of PINK1 in the Mitochondrial MatrixČlánek Rapid Evolution of PARP Genes Suggests a Broad Role for ADP-Ribosylation in Host-Virus ConflictsČlánek The Impact of Population Demography and Selection on the Genetic Architecture of Complex TraitsČlánek Lifespan Extension by Methionine Restriction Requires Autophagy-Dependent Vacuolar AcidificationČlánek The Case for Junk DNA
Článok vyšiel v časopisePLOS Genetics
Najčítanejšie tento týždeň
2014 Číslo 5- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
-
Všetky články tohto čísla
- Genetic Interactions Involving Five or More Genes Contribute to a Complex Trait in Yeast
- A Mutation in the Gene in Dogs with Hereditary Footpad Hyperkeratosis (HFH)
- Loss of Function Mutation in the Palmitoyl-Transferase HHAT Leads to Syndromic 46,XY Disorder of Sex Development by Impeding Hedgehog Protein Palmitoylation and Signaling
- Heterogeneity in the Frequency and Characteristics of Homologous Recombination in Pneumococcal Evolution
- Genome-Wide Nucleosome Positioning Is Orchestrated by Genomic Regions Associated with DNase I Hypersensitivity in Rice
- Null Mutation in PGAP1 Impairing Gpi-Anchor Maturation in Patients with Intellectual Disability and Encephalopathy
- Single Nucleotide Variants in Transcription Factors Associate More Tightly with Phenotype than with Gene Expression
- Ribosomal Protein Mutations Induce Autophagy through S6 Kinase Inhibition of the Insulin Pathway
- Recent Mitochondrial DNA Mutations Increase the Risk of Developing Common Late-Onset Human Diseases
- Epistatically Interacting Substitutions Are Enriched during Adaptive Protein Evolution
- Meiotic Drive Impacts Expression and Evolution of X-Linked Genes in Stalk-Eyed Flies
- G×G×E for Lifespan in : Mitochondrial, Nuclear, and Dietary Interactions that Modify Longevity
- Population Genomic Analysis of Ancient and Modern Genomes Yields New Insights into the Genetic Ancestry of the Tyrolean Iceman and the Genetic Structure of Europe
- p53 Requires the Stress Sensor USF1 to Direct Appropriate Cell Fate Decision
- Whole Exome Re-Sequencing Implicates and Cilia Structure and Function in Resistance to Smoking Related Airflow Obstruction
- Allelic Expression of Deleterious Protein-Coding Variants across Human Tissues
- R-loops Associated with Triplet Repeat Expansions Promote Gene Silencing in Friedreich Ataxia and Fragile X Syndrome
- PINK1-Parkin Pathway Activity Is Regulated by Degradation of PINK1 in the Mitochondrial Matrix
- The Impairment of MAGMAS Function in Human Is Responsible for a Severe Skeletal Dysplasia
- Octopamine Neuromodulation Regulates Gr32a-Linked Aggression and Courtship Pathways in Males
- Mlh2 Is an Accessory Factor for DNA Mismatch Repair in
- Activating Transcription Factor 6 Is Necessary and Sufficient for Alcoholic Fatty Liver Disease in Zebrafish
- The Spatiotemporal Program of DNA Replication Is Associated with Specific Combinations of Chromatin Marks in Human Cells
- Rapid Evolution of PARP Genes Suggests a Broad Role for ADP-Ribosylation in Host-Virus Conflicts
- Genome-Wide Inference of Ancestral Recombination Graphs
- Mutations in Four Glycosyl Hydrolases Reveal a Highly Coordinated Pathway for Rhodopsin Biosynthesis and N-Glycan Trimming in
- SHP2 Regulates Chondrocyte Terminal Differentiation, Growth Plate Architecture and Skeletal Cell Fates
- The Impact of Population Demography and Selection on the Genetic Architecture of Complex Traits
- Retinoid-X-Receptors (α/β) in Melanocytes Modulate Innate Immune Responses and Differentially Regulate Cell Survival following UV Irradiation
- Genetic Dissection of the Female Head Transcriptome Reveals Widespread Allelic Heterogeneity
- Genome Sequencing and Comparative Genomics of the Broad Host-Range Pathogen AG8
- Copy Number Variation Is a Fundamental Aspect of the Placental Genome
- GOLPH3 Is Essential for Contractile Ring Formation and Rab11 Localization to the Cleavage Site during Cytokinesis in
- Hox Transcription Factors Access the RNA Polymerase II Machinery through Direct Homeodomain Binding to a Conserved Motif of Mediator Subunit Med19
- Drosha Promotes Splicing of a Pre-microRNA-like Alternative Exon
- Predicting the Minimal Translation Apparatus: Lessons from the Reductive Evolution of
- PAX6 Regulates Melanogenesis in the Retinal Pigmented Epithelium through Feed-Forward Regulatory Interactions with MITF
- Enhanced Interaction between Pseudokinase and Kinase Domains in Gcn2 stimulates eIF2α Phosphorylation in Starved Cells
- A HECT Ubiquitin-Protein Ligase as a Novel Candidate Gene for Altered Quinine and Quinidine Responses in
- dGTP Starvation in Provides New Insights into the Thymineless-Death Phenomenon
- Phosphorylation Modulates Clearance of Alpha-Synuclein Inclusions in a Yeast Model of Parkinson's Disease
- RPM-1 Uses Both Ubiquitin Ligase and Phosphatase-Based Mechanisms to Regulate DLK-1 during Neuronal Development
- More of a Good Thing or Less of a Bad Thing: Gene Copy Number Variation in Polyploid Cells of the Placenta
- More of a Good Thing or Less of a Bad Thing: Gene Copy Number Variation in Polyploid Cells of the Placenta
- Heritable Transmission of Stress Resistance by High Dietary Glucose in
- Revertant Mutation Releases Confined Lethal Mutation, Opening Pandora's Box: A Novel Genetic Pathogenesis
- Lifespan Extension by Methionine Restriction Requires Autophagy-Dependent Vacuolar Acidification
- A Genome-Wide Assessment of the Role of Untagged Copy Number Variants in Type 1 Diabetes
- Selectivity in Genetic Association with Sub-classified Migraine in Women
- A Lack of Parasitic Reduction in the Obligate Parasitic Green Alga
- The Proper Splicing of RNAi Factors Is Critical for Pericentric Heterochromatin Assembly in Fission Yeast
- Discovery and Functional Annotation of SIX6 Variants in Primary Open-Angle Glaucoma
- Six Homeoproteins and a linc-RNA at the Fast MYH Locus Lock Fast Myofiber Terminal Phenotype
- EDR1 Physically Interacts with MKK4/MKK5 and Negatively Regulates a MAP Kinase Cascade to Modulate Plant Innate Immunity
- Genes That Bias Mendelian Segregation
- The Case for Junk DNA
- An In Vivo EGF Receptor Localization Screen in Identifies the Ezrin Homolog ERM-1 as a Temporal Regulator of Signaling
- Mosaic Epigenetic Dysregulation of Ectodermal Cells in Autism Spectrum Disorder
- Hyperactivated Wnt Signaling Induces Synthetic Lethal Interaction with Rb Inactivation by Elevating TORC1 Activities
- Mutations in the Cholesterol Transporter Gene Are Associated with Excessive Hair Overgrowth
- Scribble Modulates the MAPK/Fra1 Pathway to Disrupt Luminal and Ductal Integrity and Suppress Tumour Formation in the Mammary Gland
- A Novel CH Transcription Factor that Regulates Expression Interdependently with GliZ in
- Phosphorylation of a WRKY Transcription Factor by MAPKs Is Required for Pollen Development and Function in
- Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics
- Spermatid Cyst Polarization in Depends upon and the CPEB Family Translational Regulator
- Insights into the Genetic Structure and Diversity of 38 South Asian Indians from Deep Whole-Genome Sequencing
- Intron Retention in the 5′UTR of the Novel ZIF2 Transporter Enhances Translation to Promote Zinc Tolerance in
- A Dominant-Negative Mutation of Mouse Causes Glaucoma and Is Semi-lethal via LBD1-Mediated Dimerisation
- Biased, Non-equivalent Gene-Proximal and -Distal Binding Motifs of Orphan Nuclear Receptor TR4 in Primary Human Erythroid Cells
- Ras-Mediated Deregulation of the Circadian Clock in Cancer
- Retinoic Acid-Related Orphan Receptor γ (RORγ): A Novel Participant in the Diurnal Regulation of Hepatic Gluconeogenesis and Insulin Sensitivity
- Extensive Diversity of Prion Strains Is Defined by Differential Chaperone Interactions and Distinct Amyloidogenic Regions
- Fine Tuning of the UPR by the Ubiquitin Ligases Siah1/2
- Paternal Poly (ADP-ribose) Metabolism Modulates Retention of Inheritable Sperm Histones and Early Embryonic Gene Expression
- Allele-Specific Genome-wide Profiling in Human Primary Erythroblasts Reveal Replication Program Organization
- PLOS Genetics
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- PINK1-Parkin Pathway Activity Is Regulated by Degradation of PINK1 in the Mitochondrial Matrix
- Null Mutation in PGAP1 Impairing Gpi-Anchor Maturation in Patients with Intellectual Disability and Encephalopathy
- Phosphorylation of a WRKY Transcription Factor by MAPKs Is Required for Pollen Development and Function in
- p53 Requires the Stress Sensor USF1 to Direct Appropriate Cell Fate Decision
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy