#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Structural Correlates of Rotavirus Cell Entry


Non-enveloped viruses (viruses lacking a lipid-bilayer membrane) require local disruption of a cellular membrane to gain access to the cell interior and thereby initiate infection. Most double-strand RNA viruses have an outer protein layer that mediates this entry step and an inner-capsid particle that transcribes their segmented dsRNA genomes and extrudes the capped mRNAs into the cytosol. Removing the two rotavirus outer-layer proteins inactivates the virus, but recoating with recombinant outer-layer proteins restores infectivity. We have labeled the recombinant proteins with distinct fluorophores and the stripped inner-capsid particle with a third fluorophore and reconstituted fully infectious particles from the labeled components. We have followed by live-cell imaging the binding and engulfment of the labeled particles and studied the kinetics of inner-capsid particle release. We have interpreted these events in structural terms by examining images of entering particles from conventional electron microscopy and electron cryotomography. When analyzed in view of our previously determined high resolution structures of the virus particle and its constituents, and of information about conformational changes in the outer-layer components, our data lead to a molecular description of the observed entry steps and of the mechanism of membrane disruption.


Vyšlo v časopise: Structural Correlates of Rotavirus Cell Entry. PLoS Pathog 10(9): e32767. doi:10.1371/journal.ppat.1004355
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004355

Souhrn

Non-enveloped viruses (viruses lacking a lipid-bilayer membrane) require local disruption of a cellular membrane to gain access to the cell interior and thereby initiate infection. Most double-strand RNA viruses have an outer protein layer that mediates this entry step and an inner-capsid particle that transcribes their segmented dsRNA genomes and extrudes the capped mRNAs into the cytosol. Removing the two rotavirus outer-layer proteins inactivates the virus, but recoating with recombinant outer-layer proteins restores infectivity. We have labeled the recombinant proteins with distinct fluorophores and the stripped inner-capsid particle with a third fluorophore and reconstituted fully infectious particles from the labeled components. We have followed by live-cell imaging the binding and engulfment of the labeled particles and studied the kinetics of inner-capsid particle release. We have interpreted these events in structural terms by examining images of entering particles from conventional electron microscopy and electron cryotomography. When analyzed in view of our previously determined high resolution structures of the virus particle and its constituents, and of information about conformational changes in the outer-layer components, our data lead to a molecular description of the observed entry steps and of the mechanism of membrane disruption.


Zdroje

1. DanthiP, TostesonM, LiQH, ChowM (2003) Genome delivery and ion channel properties are altered in VP4 mutants of poliovirus. J Virol 77: 5266–5274.

2. DormitzerPR, NasonEB, PrasadBV, HarrisonSC (2004) Structural rearrangements in the membrane penetration protein of a non-enveloped virus. Nature 430: 1053–1058.

3. KimIS, TraskSD, BabyonyshevM, DormitzerPR, HarrisonSC (2010) Effect of mutations in VP5 hydrophobic loops on rotavirus cell entry. J Virol 84: 6200–6207.

4. Estes MK, Kapikian AZ (2007) Rotaviruses. In: Knipe DM, Howley PM, editors. Fields Virology, 5th ed. Philadelphia: Lippincott, Williams & Wilkins. pp. 1918–1974.

5. DormitzerPR, GreenbergHB, HarrisonSC (2000) Purified recombinant rotavirus VP7 forms soluble, calcium-dependent trimers. Virology 277: 420–428.

6. ChenJZ, SettembreEC, AokiST, ZhangX, BellamyAR, et al. (2009) Molecular interactions in rotavirus assembly and uncoating seen by high-resolution cryo-EM. Proc Natl Acad Sci U S A 106: 10644–10648.

7. AokiST, SettembreEC, TraskSD, GreenbergHB, HarrisonSC, et al. (2009) Structure of rotavirus outer-layer protein VP7 bound with a neutralizing Fab. Science 324: 1444–1447.

8. PrasadBVV, WangGJ, ClrexJPM, ChiuW (1988) Three-dimensional structure of rotavirus. J Mol Biol 1998: 269–275.

9. SettembreEC, ChenJZ, DormitzerPR, GrigorieffN, HarrisonSC (2011) Atomic model of an infectious rotavirus particle. EMBO J 30: 408–416.

10. CrawfordSE, MukherjeeSK, EstesMK, LawtonJA, ShawAL, et al. (2001) Trypsin cleavage stabilizes the rotavirus VP4 spike. J Virol 75: 6052–6061.

11. ClarkSM, RothJR, ClarkML, BarnettBB, SpendloveRS (1981) Trypsin enhancement of rotavirus infectivity: mechanism of enhancement. J Virol 39: 816–822.

12. EspejoRT, LopezS, AriasC (1981) Structural polypeptides of simian rotavirus SA11 and the effect of trypsin. J Virol 37: 156–160.

13. RodriguezJM, ChichonFJ, Martin-ForeroE, Gonzalez-CamachoF, CarrascosaJL, et al. (2014) New insights into rotavirus entry machinery: stabilization of rotavirus spike conformation is independent of trypsin cleavage. PLoS Pathog 10: e1004157.

14. DormitzerPR, SunZY, WagnerG, HarrisonSC (2002) The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. EMBO J 21: 885–897.

15. YoderJD, DormitzerPR (2006) Alternative intermolecular contacts underlie the rotavirus VP5* two- to three-fold rearrangement. EMBO J 25: 1559–1568.

16. YoderJD, TraskSD, VoTP, BinkaM, FengN, et al. (2009) VP5* rearranges when rotavirus uncoats. J Virol 83: 11372–11377.

17. HaselhorstT, FlemingFE, DyasonJC, HartnellRD, YuX, et al. (2009) Sialic acid dependence in rotavirus host cell invasion. Nat Chem Biol 5: 91–93.

18. HuL, CrawfordSE, CzakoR, Cortes-PenfieldNW, SmithDF, et al. (2012) Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen. Nature 485: 256–259.

19. MartinezMA, LopezS, AriasCF, IsaP (2013) Gangliosides have a functional role during rotavirus cell entry. J Virol 87: 1115–1122.

20. GutierrezM, IsaP, Sanchez-San MartinC, Perez-VargasJ, EspinosaR, et al. (2010) Different rotavirus strains enter MA104 cells through different endocytic pathways: the role of clathrin-mediated endocytosis. J Virol 84: 9161–9169.

21. WolfM, VoPT, GreenbergHB (2011) Rhesus rotavirus entry into a polarized epithelium is endocytosis dependent and involves sequential VP4 conformational changes. J Virol 85: 2492–2503.

22. TraskSD, DormitzerPR (2006) Assembly of highly infectious rotavirus particles recoated with recombinant outer capsid proteins. J Virol 80: 11293–11304.

23. TraskSD, KimIS, HarrisonSC, DormitzerPR (2010) A rotavirus spike protein conformational intermediate binds lipid bilayers. J Virol 84: 1764–1770.

24. EstesMK, GrahamDY, GerbaCP, SmithEM (1979) Simian rotavirus SA11 replication in cell cultures. J Virol 31: 810–815.

25. AokiST, TraskSD, CoulsonBS, GreenbergHB, DormitzerPR, et al. (2011) Cross-linking of rotavirus outer capsid protein VP7 by antibodies or disulfides inhibits viral entry. J Virol 85: 10509–10517.

26. DormitzerPR, GreenbergHB, HarrisonSC (2001) Proteolysis of monomeric recombinant rotavirus VP4 yields an oligomeric VP5* core. J Virol 75: 7339–7350.

27. MéndezE, LopezS, CuadrasMA, RomeroP, AriasCF (1999) Entry of rotaviruses is a multistep process. Virology 263: 450–459.

28. GuerreroCA, MendezE, ZarateS, IsaP, LopezS, et al. (2000) Integrin alpha(v)beta(3) mediates rotavirus cell entry. Proc Natl Acad Sci U S A 97: 14644–14649.

29. ZarateS, EspinosaR, RomeroP, GuerreroCA, AriasCF, et al. (2000) Integrin alpha2beta1 mediates the cell attachment of the rotavirus neuraminidase-resistant variant nar3. Virology 278: 50–54.

30. GrahamKL, HalaszP, TanY, HewishMJ, TakadaY, et al. (2003) Integrin-using rotaviruses bind alpha2beta1 integrin alpha2 I domain via VP4 DGE sequence and recognize alphaXbeta2 and alphaVbeta3 by using VP7 during cell entry. J Virol 77: 9969–9978.

31. GuerreroCA, BouyssounadeD, ZarateS, IsaP, LopezT, et al. (2002) Heat shock cognate protein 70 is involved in rotavirus cell entry. J Virol 76: 4096–4102.

32. Diaz-SalinasMA, RomeroP, EspinosaR, HoshinoY, LopezS, et al. (2013) The spike protein VP4 defines the endocytic pathway used by rotavirus to enter MA104 cells. J Virol 87: 1658–1663.

33. EhrlichM, BollW, Van OijenA, HariharanR, ChandranK, et al. (2004) Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118: 591–605.

34. MassolRH, BollW, GriffinAM, KirchhausenT (2006) A burst of auxilin recruitment determines the onset of clathrin-coated vesicle uncoating. Proc Natl Acad Sci U S A 103: 10265–10270.

35. WolfM, DealEM, GreenbergHB (2012) Rhesus rotavirus trafficking during entry into MA104 cells is restricted to the early endosome compartment. J Virol 86: 4009–4013.

36. Silva-AyalaD, LopezT, GutierrezM, PerrimonN, LopezS, et al. (2013) Genome-wide RNAi screen reveals a role for the ESCRT complex in rotavirus cell entry. Proc Natl Acad Sci U S A 110: 10270–10275.

37. Diaz-SalinasMA, Silva-AyalaD, LopezS, AriasCF (2014) Rotaviruses reach late endosomes and require the cation-dependent mannose-6-phosphate receptor and the activity of cathepsin proteases to enter the cell. J Virol 88: 4389–4402.

38. KaljotKT, ShawRD, RubinDH, GreenbergHB (1988) Infectious rotavirus enters cells by direct cell membrane penetration, not by endocytosis. J Virol 62: 1136–1144.

39. TsaiB, GilbertJM, StehleT, LencerW, BenjaminTL, et al. (2003) Gangliosides are receptors for murine polyoma virus and SV40. EMBO J 22: 4346–4355.

40. HummelerK, TomassiniN, SokolF (1970) Morphological aspects of the uptake of simian virus 40 by permissive cells. J Virol 6: 87–93.

41. EwersH, RomerW, SmithAE, BaciaK, DmitrieffS, et al. (2010) GM1 structure determines SV40-induced membrane invagination and infection. Nat Cell Biol 12: 11–18 sup pp 11–12.

42. CocucciE, AguetF, BoulantS, KirchhausenT (2012) The first five seconds in the life of a clathrin-coated pit. Cell 150: 495–507.

43. CuretonDK, MassolRH, WhelanSP, KirchhausenT (2010) The length of vesicular stomatitis virus particles dictates a need for actin assembly during clathrin-dependent endocytosis. PLoS Pathog 6: e1001127.

44. HarbisonCE, LyiSM, WeichertWS, ParrishCR (2009) Early steps in cell infection by parvoviruses: host-specific differences in cell receptor binding but similar endosomal trafficking. J Virol 83: 10504–10514.

45. MastronardeDN (2005) Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152: 36–51.

46. KremerJR, MastronardeDN, McIntoshJR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116: 71–76.

47. NicastroD, SchwartzC, PiersonJ, GaudetteR, PorterME, et al. (2006) The molecular architecture of axonemes revealed by cryoelectron tomography. Science 313: 944–948.

48. KalwarczykT, ZiebaczN, BielejewskaA, ZaboklickaE, KoynovK, et al. (2011) Comparative analysis of viscosity of complex liquids and cytoplasm of mammalian cells at the nanoscale. Nano Lett 11: 2157–2163.

49. LudertJE, FengN, YuJH, BroomeRL, HoshinoY, et al. (1996) Genetic mapping indicates that VP4 is the rotavirus cell attachment protein in vitro and in vivo. J Virol 70: 487–493.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#