#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Delineation of Interfaces on Human Alpha-Defensins Critical for Human Adenovirus and Human Papillomavirus Inhibition


Human α-defensins are an important component of the innate immune response and provide an initial block against a broad number of infectious agents, including viruses and bacteria. Characteristics of α-defensins that are necessary for their anti-bacterial activity have been identified, but our understanding of determinants required for activity against non-enveloped viruses is limited. In this work, we utilized alanine scan mutagenesis to systematically and comprehensively investigate the role of hydrophobic and charged residues of two α-defensins in binding to and/or neutralization of human adenovirus and human papillomavirus. Our results implicate common core hydrophobic residues as critical for inhibition of these non-enveloped viruses by the two α-defensins, with specificity provided by charged residues unique to each interaction. We also found that the number of α-defensin molecules bound to the virus was a stronger correlate of the anti-viral potency of the α-defensin mutants than their absolute affinity for the viral capsid. Understanding common characteristics of α-defensins important for non-enveloped virus binding will inform rules that govern the function of these abundant and multifaceted peptides in host defense.


Vyšlo v časopise: Delineation of Interfaces on Human Alpha-Defensins Critical for Human Adenovirus and Human Papillomavirus Inhibition. PLoS Pathog 10(9): e32767. doi:10.1371/journal.ppat.1004360
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004360

Souhrn

Human α-defensins are an important component of the innate immune response and provide an initial block against a broad number of infectious agents, including viruses and bacteria. Characteristics of α-defensins that are necessary for their anti-bacterial activity have been identified, but our understanding of determinants required for activity against non-enveloped viruses is limited. In this work, we utilized alanine scan mutagenesis to systematically and comprehensively investigate the role of hydrophobic and charged residues of two α-defensins in binding to and/or neutralization of human adenovirus and human papillomavirus. Our results implicate common core hydrophobic residues as critical for inhibition of these non-enveloped viruses by the two α-defensins, with specificity provided by charged residues unique to each interaction. We also found that the number of α-defensin molecules bound to the virus was a stronger correlate of the anti-viral potency of the α-defensin mutants than their absolute affinity for the viral capsid. Understanding common characteristics of α-defensins important for non-enveloped virus binding will inform rules that govern the function of these abundant and multifaceted peptides in host defense.


Zdroje

1. GanzT (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3: 710–720.

2. LehrerRI (2007) Multispecific myeloid defensins. Curr Opin Hematol 14: 16–21.

3. SelstedME, OuelletteAJ (2005) Mammalian defensins in the antimicrobial immune response. Nat Immunol 6: 551–557.

4. LehrerRI, LuW (2012) alpha-Defensins in human innate immunity. Immunol Rev 245: 84–112.

5. WilsonSS, WiensME, SmithJG (2013) Antiviral mechanisms of human defensins. J Mol Biol 425: 4965–4980.

6. Shah R, Chang TL (2012) Defensins in Viral Infection. Small Wonders: Peptides for Disease Control: American Chemical Society. pp. 137–171.

7. SmithJG, NemerowGR (2008) Mechanism of adenovirus neutralization by human alpha-defensins. Cell Host Microbe 3: 11–19.

8. NguyenEK, NemerowGR, SmithJG (2010) Direct evidence from single-cell analysis that human alpha-defensins block adenovirus uncoating to neutralize infection. J Virol 84: 4041–4049.

9. SmithJG, SilvestryM, LindertS, LuW, NemerowGR, et al. (2010) Insight into the mechanisms of adenovirus capsid disassembly from studies of defensin neutralization. PLoS Pathog 6: e1000959.

10. MoyerCL, WiethoffCM, MaierO, SmithJG, NemerowGR (2011) Functional genetic and biophysical analyses of membrane disruption by human adenovirus. J Virol 85: 2631–2641.

11. BuckCB, DayPM, ThompsonCD, LubkowskiJ, LuW, et al. (2006) Human alpha-defensins block papillomavirus infection. Proc Natl Acad Sci U S A 103: 1516–1521.

12. ZinsSR, NelsonCD, MaginnisMS, BanerjeeR, O'HaraBA, et al. (2013) The human alpha defensin HD5 neutralizes JC polyomavirus infection by reducing ER traffic and stabilizing the viral capsid. J Virol 88: 948–960.

13. RajabiM, EricksenB, WuX, de LeeuwE, ZhaoL, et al. (2012) Functional determinants of human enteric alpha-defensin HD5: crucial role for hydrophobicity at dimer interface. J Biol Chem 287: 21615–21627.

14. TaiKP, LeVV, SelstedME, OuelletteAJ (2014) Hydrophobic Determinants of alpha-Defensin Bactericidal Activity. Infect Immun 82: 2195–2202.

15. PazgierM, WeiG, EricksenB, JungG, WuZ, et al. (2012) Sometimes it takes two to tango: contributions of dimerization to functions of human alpha-defensin HNP1 peptide. J Biol Chem 287: 8944–8953.

16. GounderAP, WiensME, WilsonSS, LuW, SmithJG (2012) Critical determinants of human alpha-defensin 5 activity against non-enveloped viruses. J Biol Chem 287: 24554–24562.

17. LynchJP, FishbeinM, EchavarriaM (2011) Adenovirus. Semin Respir Crit Care Med 32: 494–511.

18. FoxJP, HallCE, CooneyMK (1977) The Seattle Virus Watch. VII. Observations of adenovirus infections. Am J Epidemiol 105: 362–386.

19. QuayleAJ, PorterEM, NussbaumAA, WangYM, BrabecC, et al. (1998) Gene expression, immunolocalization, and secretion of human defensin-5 in human female reproductive tract. Am J Pathol 152: 1247–1258.

20. XieC, PrahlA, EricksenB, WuZ, ZengP, et al. (2005) Reconstruction of the conserved beta-bulge in mammalian defensins using D-amino acids. J Biol Chem 280: 32921–32929.

21. RajabiM, de LeeuwE, PazgierM, LiJ, LubkowskiJ, et al. (2008) The conserved salt bridge in human alpha-defensin 5 is required for its precursor processing and proteolytic stability. J Biol Chem 283: 21509–21518.

22. FlattJW, KimR, SmithJG, NemerowGR, StewartPL (2013) An intrinsically disordered region of the adenovirus capsid is implicated in neutralization by human alpha defensin 5. PLoS One 8: e61571.

23. SnijderJ, ReddyVS, MayER, RoosWH, NemerowGR, et al. (2013) Integrin and defensin modulate the mechanical properties of adenovirus. J Virol 87: 2756–2766.

24. LaverWG, WrigleyNG, PereiraHG (1969) Removal of pentons from particles of adenovirus type 2. Virology 39: 599–604.

25. LehrerRI, JungG, RuchalaP, AndreS, GabiusHJ, et al. (2009) Multivalent binding of carbohydrates by the human alpha-defensin, HD5. J Immunol 183: 480–490.

26. WeiG, PazgierM, de LeeuwE, RajabiM, LiJ, et al. (2010) Trp-26 imparts functional versatility to human alpha-defensin HNP1. J Biol Chem 285: 16275–16285.

27. CauetG, StrubJM, LeizeE, WagnerE, Van DorsselaerA, et al. (2005) Identification of the glycosylation site of the adenovirus type 5 fiber protein. Biochemistry 44: 5453–5460.

28. Chee-SheungCC, GinsbergHS (1982) Characterization of a temperature-sensitive fiber mutant of type 5 adenovirus and effect of the mutation on virion assembly. J Virol 42: 932–950.

29. Caillet-BoudinML, StreckerG, MichalskiJC (1989) O-linked GlcNAc in serotype-2 adenovirus fibre. Eur J Biochem 184: 205–211.

30. PazgierM, PrahlA, HooverDM, LubkowskiJ (2007) Studies of the biological properties of human beta-defensin 1. J Biol Chem 282: 1819–1829.

31. VarneyKM, BonvinAM, PazgierM, MalinJ, YuW, et al. (2013) Turning Defense into Offense: Defensin Mimetics as Novel Antibiotics Targeting Lipid II. PLoS Pathog 9: e1003732.

32. BuckCB, PastranaDV, LowyDR, SchillerJT (2004) Efficient intracellular assembly of papillomaviral vectors. J Virol 78: 751–757.

33. BuckCB, ThompsonCD, PangYY, LowyDR, SchillerJT (2005) Maturation of papillomavirus capsids. J Virol 79: 2839–2846.

34. WuZ, EricksenB, TuckerK, LubkowskiJ, LuW (2004) Synthesis and characterization of human alpha-defensins 4–6. J Pept Res 64: 118–125.

35. PaceCN, VajdosF, FeeL, GrimsleyG, GrayT (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4: 2411–2423.

36. SchneiderCA, RasbandWS, EliceiriKW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9: 671–675.

37. Medina-KauweLK, KasaharaN, KedesL (2001) 3PO, a novel nonviral gene delivery system using engineered Ad5 penton proteins. Gene Ther 8: 795–803.

38. ZinglerK, YoungJA (1996) Residue Trp-48 of Tva is critical for viral entry but not for high-affinity binding to the SU glycoprotein of subgroup A avian leukosis and sarcoma viruses. J Virol 70: 7510–7516.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#