-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
, , , Genetic Variability: Cryptic Biological Species or Clonal Near-Clades?
Micropathogen species definition is extremely difficult, since concepts applied to higher organisms (the biological species concept) are inadequate. In particular, the pathogens here surveyed have given rise to long-lasting controversies about their species status and that of the genotypes that subdivide them. The population genetic approach based on the predominant clonal evolution (PCE) concept proposed by us could bring simple solutions to these controversies, since it permits the description of clearly defined evolutionary entities (clonal multilocus genotypes and near-clades [incompletely isolated clades]) that could be the basis for species description, if the concerned specialists find it justified for applied research. The PCE model also provides a convenient framework for applied studies (molecular epidemiology, vaccine and drug design, clinical research) dealing with these pathogens and others.
Vyšlo v časopise: , , , Genetic Variability: Cryptic Biological Species or Clonal Near-Clades?. PLoS Pathog 10(4): e32767. doi:10.1371/journal.ppat.1003908
Kategorie: Opinion
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1003908Souhrn
Micropathogen species definition is extremely difficult, since concepts applied to higher organisms (the biological species concept) are inadequate. In particular, the pathogens here surveyed have given rise to long-lasting controversies about their species status and that of the genotypes that subdivide them. The population genetic approach based on the predominant clonal evolution (PCE) concept proposed by us could bring simple solutions to these controversies, since it permits the description of clearly defined evolutionary entities (clonal multilocus genotypes and near-clades [incompletely isolated clades]) that could be the basis for species description, if the concerned specialists find it justified for applied research. The PCE model also provides a convenient framework for applied studies (molecular epidemiology, vaccine and drug design, clinical research) dealing with these pathogens and others.
Zdroje
1. TibayrencM, KjellbergF, AyalaFJ (1990) A clonal theory of parasitic protozoa: the population structure of Entamoeba, Giardia, Leishmania, Naegleria, Plasmodium, Trichomonas and Trypanosoma, and its medical and taxonomical consequences. Proc Nat Acad Sci U S A 87 : 2414–2418.
2. TibayrencM, KjellbergF, ArnaudJ, OuryB, BrenièreSF, et al. (1991) Are eukaryotic microorganisms clonal or sexual? A population genetics vantage. Proc Natl Acad Sci U S A 88 : 5129–5133.
3. TibayrencM, AyalaFJ (2012) Reproductive clonality of pathogens: A perspective on pathogenic viruses, bacteria, fungi, and parasitic protozoa. Proc Nat Acad Sci U S A 109: E3305–E3313 doi:10.1073/pnas.1212452109
4. AnderssonJO (2012) Double peaks reveal rare diplomonad sex. Trends Parasitol 28 : 46–52.
5. BoversM, HagenF, KuramaeEE, BoekhoutT (2008) Six monophyletic lineages identified within Cryptococcus neoformans and Cryptococcus gattii by multi-locus sequence typing. Fungal Genet Biol 45 : 400–421.
6. CooperMA, AdamRD, WorobeyM, SterlingCR (2007) Population Genetics Provides Evidence for Recombination in Giardia. Curr Biol 17 : 1984–1988.
7. GateiW, DasP, DuttaP, SenA, CamaV, et al. (2007) Multilocus sequence typing and genetic structure of Cryptosporidium hominis from children in Kolkata, India. Infect Genet Evol 7 : 197–205.
8. LinX, HeitmanJ (2006) The Biology of the Cryptococcus neoformans Species Complex. Ann Rev Microbiol 60 : 69–105.
9. MorrisonLJ, MallonME, SmithHV, MacLeodA, XiaoL, et al. (2008) The population structure of the Cryptosporidium parvum population in Scotland: A complex picture. Infect Genet Evol 8 : 121–129.
10. TibayrencM, AyalaFJ (2013) How clonal are Trypanosoma and Leishmania? Trends Parasitol 29 : 264–269.
11. TibayrencM, AyalaFJ (2014) New insights into Clonality and Panmixia in Plasmodium and Toxoplasma. Adv Parasitol 84 : 253–268.
12. CaloS, BillmyreBB, HeitmanJ (2013) Generators of Phenotypic Diversity in the Evolution of Pathogenic Microorganisms. PLoS Pathog 9: e1003181 doi:10.1371/journal.ppat.1003181
13. Ortega-PierresG, SmithHV, CaccioSM, ThompsonRC (2009) New tools provide further insights into Giardia and Cryptosporidium biology. Trends Parasitol 25 : 410–416.
14. RamírezJD, Tapia-CalleG, GuhlF (2013) Genetic structure of Trypanosoma cruzi in Colombia revealed by a High-throughput Nuclear Multilocus Sequence Typing (nMLST) approach. BMC Genet 14 : 96.
15. TibayrencM, AyalaFJ (2013) Unisexual reproduction is a particular case of clonality. Comment on: Feretzaki F, Heitman J. (2013) Unisexual Reproduction Drives Evolution of Eukaryotic Microbial Pathogens. PLoS Pathog 9: e1003674 doi:10.1371/journal.ppat.1003674
16. BirkyCWJr (2009) Giardia Sex? Yes, but how and how much? Trends Parasitol 26 : 70–74.
17. HeitmanJ (2006) Sexual reproduction and the evolution of microbial pathogens. Curr Biol 16: R711–R725.
18. NiM, FeretzakiM, LiW, Floyd-AveretteA, MieczkowskiP, et al. (2013) Unisexual and Heterosexual Meiotic Reproduction Generate Aneuploidy and Phenotypic Diversity De Novo in the Yeast Cryptococcus neoformans. PLoS Biol 11: e1001653 doi:10.1371/journal.pbio.1001653
19. XuJ (2006) Fundamentals of Fungal Molecular Population Genetic Analyses. Curr Issues Mol Biol 8 : 75–80.
20. LehtonenJ, SchmidtDJ, HeubelK, KokkoH (2013) Evolutionary and ecological implications of sexual parasitism. Trends Ecol Evol 28 : 297–306.
21. FeretzakiF, HeitmanJ (2013) Unisexual Reproduction Drives Evolution of Eukaryotic Microbial Pathogens. PLoS Pathog 9: e1003674 doi:10.1371/journal.ppat.1003674
22. RougeronV, De MeeûsT, Kako OuragaS, HideM, BañulsAL (2010) “Everything You Always Wanted to Know about Sex (but Were Afraid to Ask)” in Leishmania after Two Decades of Laboratory and Field Analyses. PLoS Pathog 6: e1001004 doi:10.1371/journal.ppat.1001004
23. MessengerLA, LlewellynMS, BhattacharyyaT, FranzénO, LewisMD, et al. (2012) Multiple Mitochondrial Introgression Events and Heteroplasmy in Trypanosoma cruzi Revealed by Maxicircle MLST and Next Generation Sequencing. PLoS Negl Trop Dis 6: e1584 doi:10.1371/journal.pntd.0001584
24. CacciòSM, RyanU (2008) Molecular epidemiology of giardiasis. Molec Biochem Parasitol 160 : 75–80.
25. EstevesF, GasparJ, TavaresA, MoserI, AntunesF, et al. (2010) Population structure of Pneumocystis jirovecii isolated from immunodeficiency virus-positive patients. Infect Genet Evol 10 : 192–199.
26. KhayhanK, HagenF, PanW, SimwamiS, FisherMC, et al. (2013) Geographically Structured Populations of Cryptococcus neoformans Variety grubii in Asia Correlate with HIV Status and Show a Clonal Population Structure. PLoS ONE 8: e72222 doi:10.1371/journal.pone.0072222
27. Maynard SmithJ, SmithNH, O'RourkeM, SprattBG (1993) How clonal are bacteria? Proc Natl Acad Sci U S A 90 : 4384–4388.
28. SchurkoAM, NeimanM, LogsdonJMJr (2008) Signs of sex: what we know and how we know it. Trends Ecol Evol 2 : 208–217.
29. Avise JC (2004) Molecular markers, Natural History and Evolution. 2nd ed. New York, London: Chapman & Hall.
30. NgamskulrungrojP, GilgadoF, FaganelloJ, LitvintsevaAP, LealAL, et al. (2009) Genetic Diversity of the Cryptococcus Species Complex Suggests that Cryptococcus gattii Deserves to Have Varieties. PLoS ONE 4: e5862 doi:10.1371/journal.pone.0005862
31. VoelzK, MaH, PhadkeS, ByrnesEJ, ZhuP, et al. (2013) Transmission of Hypervirulence Traits via Sexual Reproduction within and between Lineages of the Human Fungal Pathogen Cryptococcus gattii. PLoS Genet 9: e1003771 doi:10.1371/journal.pgen.1003771
32. CampbellLT, CurrieBJ, KrockenbergerM, MalikR, MeyerW, et al. (2005) Clonality and Recombination in Genetically Differentiated Subgroups of Cryptococcus gattii. Eukaryotic Cell 4 : 1403–1409.
33. AndersonTJ, HauboldB, WilliamsJT, Estrada-FrancoJG, RichardsonL, et al. (2000) Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Mol Biol Evol 17 : 1467–1482.
34. AgrawalAF (2006) Evolution of Sex: Why Do Organisms Shuffle Their Genotypes? Curr Biol 16: R696–R704.
35. BirkyCW (2005) Sex: is Giardia doing it in the dark? Curr Biol 15: R56–R58.
36. MonisPT, CaccioSM, ThompsonRCA (2009) Variation in Giardia: towards a taxonomic revision of the genus. Trends Parasitol 25 : 93–100.
37. TakumiK, SwartA, MankT, Lasek-NesselquistE, LebbadM, et al. (2012) Population-based analyses of Giardia duodenalis is consistent with the clonal assemblage structure. Parasit Vectors 5 : 168.
38. CampbellLT, CarterDE (2006) Looking for sex in the fungal pathogens Cryptococcus neoformans and Cryptococcus gattii. FEMS Yeast Res 6 : 588–598.
39. CarricondeF, GilgadoF, ArthurI, EllisD, MalikR, et al. (2011) Clonality and α-a Recombination in the Australian Cryptococcus gattii VGII Population - An Emerging Outbreak in Australia. PLoS ONE 6: e16936 doi:10.1371/journal.pone.0016936
40. ChowdharyA, HiremathSS, SunS, KowshikT, RandhawaHS, et al. (2011) Genetic differentiation, recombination and clonal expansion in environmental populations of Cryptococcus gattii in India. Environm Microbiol 13 : 1875–1888.
41. LiW, AveretteAF, Desnos-OllivierM, NiM, DromerF, et al. (2012) Genetic Diversity and Genomic Plasticity of Cryptococcus neoformans AD Hybrid Strains. G3 (Bethesda) 2 : 83–97.
42. ChaturvediV, ChaturvediS (2011) Cryptococcus gattii: a resurgent fungal pathogen. Trends Microbiol 19 : 564–571.
43. FraserJA, GilesSS, WeninkEC, Geunes-BoyerSG, WrightJR, et al. (2005) Same-sex mating and the origin of the Vancouver Island Cryptococcus gattii outbreak. Nature 437 : 1360–1364.
44. LitvintsevaAP, MitchellTG (2012) Population Genetic Analyses Reveal the African Origin and Strain Variation of Cryptococcus neoformans var. grubii. PLoS Pathog 8: e1002495 doi:10.1371/journal.ppat.1002495
45. MatosO, EstevesF (2010) Pneumocystis jirovecii multilocus gene sequencing: findings and implications. Future Microbiol 5 : 1257–1267.
46. CacciòSM, SprongH (2010) Giardia duodenalis: Genetic recombination and its implications for taxonomy and molecular epidemiology. Exp Parasitol 124 : 107–112.
47. FengY, XiaoL (2011) Zoonotic Potential and Molecular Epidemiology of Giardia Species and Giardiasis. Clin Microbiol Rev 24 : 110 doi:10.1128/CMR.00033-10
48. RyanA, CacciòSM (2013) Zoonotic potential of Giardia. Int J Parasitol 43 : 943–956.
49. MazarsE, GuyotK, DurandI, Dei-CasE, BoucherS, et al. (1997) Isoenzyme Diversity in Pneumocystis carinii from Rats, Mice, and Rabbits. J Infect Dis 175 : 655–660.
50. Aliouat-DenisCM, ChabéM, DemancheC, AliouatEM, ViscogliosiE, et al. (2008) Pneumocystis species, co-evolution and pathogenic power. Infect Genet Evol 8 : 708–726.
51. PlutzerJ, OngerthJ, KaranisP (2010) Giardia taxonomy, phylogeny and epidemiology: Facts and open questions. Int J Hyg Environm Health 213 : 321–333.
52. WielingaCM, ThompsonRCA (2007) Comparative evaluation of Giardia duodenalis sequence data. Parasitol 134 : 1795–1821.
53. WidmerG, SullivanS (2012) Genomics and population biology of Cryptosporidium species. Parasite Immunol 34 : 61–71.
54. De WaeleV, Van den BroeckF, HuyseT, McGrathG, HigginsI, et al. (2013) Panmictic Structure of the Cryptosporidium parvum Population in Irish Calves: Influence of Prevalence and Host Movement. Appl Environ Microbiol 79 : 2534–2541.
55. HergesGR, WidmerG, ClarkME, KhanE, GiddingsCW, et al. (2012) Evidence that Cryptosporidium parvum Populations Are Panmictic and Unstructured in the Upper Midwest of the United States. Appl Environ Microbiol 78 : 8096–8101.
56. SuC, KhanA, ZhouP, MajumdaraD, AjzenbergD, et al. (2012) Globally diverse Toxoplasmagondii isolates comprise six major clades originating from a small number of distinct ancestral lineages. Proc Nat Acad Sci U S A 109 : 5844–5849.
57. XuJ (2006) Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances. Molec Ecol 15 : 1713–1731.
58. ZingalesB, MilesMA, CampbellD, TibayrencM, MacedoAM, et al. (2012) The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect Genet Evol 12 : 240–253.
59. TanrıverdiS, GrinbergA, ChalmersRM, HunterPR, PetrovicZ, et al. (2008) Inferences about the Global Population Structures of Cryptosporidium parvum and Cryptosporidium hominis. Appl Env Microbiol 74 : 7227–7234.
60. FengY, YangW, Ryan U ZhangL, KvácM, et al. (2011) Development of a Multilocus Sequence Tool for Typing Cryptosporidium muris and Cryptosporidium andersoni. J Clin Microbiol 49 : 34–41.
61. WangR, JianF, ZhangL, NingC, LiuA, et al. (2012) Multilocus Sequence Subtyping and Genetic Structure of Cryptosporidium muris and Cryptosporidium andersoni. PLoS ONE 7: e43782 doi:10.1371/journal.pone.0043782
62. NgouanesavanhT, GuyotK, CertadG, Le FichouxY, ChartierC, et al. (2006) Cryptosporidium Population Genetics: Evidence of Clonality in Isolates from France and Haiti. J Euk Microbiol 53: S33–S36.
63. XiaoL (2010) Molecular epidemiology of cryptosporidiosis: An update. Exp Parasitol 124 : 80–89.
64. WidmerG, LeeY (2010) Comparison of Single - and Multilocus Genetic Diversity in the Protozoan Parasites Cryptosporidium parvum and C. hominis. Appl Environm Microbiol 76 : 6639–6644.
65. TibayrencM (1993) Entameba, Giardia and Toxoplasma: clones or cryptic species? Parasitol Today 9 : 102–105.
66. Dobzhansky T (1937) Genetics and the origin of species. New York: Columbia University Press.
67. Cracraft J (1983) Species concept and speciation analysis. In: Johnson RF, editor. Current ornithology. New York: Plenum Press. pp. 159–187
68. FayerR (2010) Taxonomy and species delimitation in Cryptosporidium. Exp Parasitol 124 : 90–97.
69. Lasek-NesselquistE, WelchDM, ThompstonRCA, SteuartRF, SoginML (2009) Genetic Exchange Within and Between Assemblages of Giardia duodenalis. J Euk Microbiol 56 : 504–518.
70. XuF, Jerlström-HultqvistJ, AnderssonJO (2012) Genome-Wide Analyses of Recombination Suggest That Giardia intestinalis Assemblages Represent Different Species. Mol Biol Evol 29 : 2895–2898.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium
Článek Affinity Proteomics Reveals Elevated Muscle Proteins in Plasma of Children with Cerebral MalariaČlánek The Transcriptional Activator LdtR from ‘ Liberibacter asiaticus’ Mediates Osmotic Stress ToleranceČlánek Complement-Related Proteins Control the Flavivirus Infection of by Inducing Antimicrobial PeptidesČlánek Fungal Chitin Dampens Inflammation through IL-10 Induction Mediated by NOD2 and TLR9 ActivationČlánek Parasite Fate and Involvement of Infected Cells in the Induction of CD4 and CD8 T Cell Responses to
Článok vyšiel v časopisePLOS Pathogens
Najčítanejšie tento týždeň
2014 Číslo 4- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
-
Všetky články tohto čísla
- , , , Genetic Variability: Cryptic Biological Species or Clonal Near-Clades?
- Early Mortality Syndrome Outbreaks: A Microbial Management Issue in Shrimp Farming?
- Wormholes in Host Defense: How Helminths Manipulate Host Tissues to Survive and Reproduce
- Plastic Proteins and Monkey Blocks: How Lentiviruses Evolved to Replicate in the Presence of Primate Restriction Factors
- The 2010 Cholera Outbreak in Haiti: How Science Solved a Controversy
- Affinity Proteomics Reveals Elevated Muscle Proteins in Plasma of Children with Cerebral Malaria
- Noncanonical Role for the Host Vps4 AAA+ ATPase ESCRT Protein in the Formation of Replicase
- Efficient Parvovirus Replication Requires CRL4-Targeted Depletion of p21 to Prevent Its Inhibitory Interaction with PCNA
- Host-to-Pathogen Gene Transfer Facilitated Infection of Insects by a Pathogenic Fungus
- The Transcriptional Activator LdtR from ‘ Liberibacter asiaticus’ Mediates Osmotic Stress Tolerance
- Coxsackievirus B Exits the Host Cell in Shed Microvesicles Displaying Autophagosomal Markers
- TCR Affinity Associated with Functional Differences between Dominant and Subdominant SIV Epitope-Specific CD8 T Cells in Rhesus Monkeys
- Coxsackievirus-Induced miR-21 Disrupts Cardiomyocyte Interactions via the Downregulation of Intercalated Disk Components
- Ligands of MDA5 and RIG-I in Measles Virus-Infected Cells
- Kind Discrimination and Competitive Exclusion Mediated by Contact-Dependent Growth Inhibition Systems Shape Biofilm Community Structure
- Structural Differences Explain Diverse Functions of Actins
- HSCARG Negatively Regulates the Cellular Antiviral RIG-I Like Receptor Signaling Pathway by Inhibiting TRAF3 Ubiquitination Recruiting OTUB1
- Vaginitis: When Opportunism Knocks, the Host Responds
- Complement-Related Proteins Control the Flavivirus Infection of by Inducing Antimicrobial Peptides
- Fungal Chitin Dampens Inflammation through IL-10 Induction Mediated by NOD2 and TLR9 Activation
- Microbial Pathogens Trigger Host DNA Double-Strand Breaks Whose Abundance Is Reduced by Plant Defense Responses
- Alveolar Macrophages Are Essential for Protection from Respiratory Failure and Associated Morbidity following Influenza Virus Infection
- An Interaction between Glutathione and the Capsid Is Required for the Morphogenesis of C-Cluster Enteroviruses
- Concerted Spatio-Temporal Dynamics of Imported DNA and ComE DNA Uptake Protein during Gonococcal Transformation
- Potent Dengue Virus Neutralization by a Therapeutic Antibody with Low Monovalent Affinity Requires Bivalent Engagement
- Regulation of Human T-Lymphotropic Virus Type I Latency and Reactivation by HBZ and Rex
- Functionally Redundant RXLR Effectors from Act at Different Steps to Suppress Early flg22-Triggered Immunity
- The Pathogenic Mechanism of the Virulence Factor, Mycolactone, Depends on Blockade of Protein Translocation into the ER
- Role of Calmodulin-Calmodulin Kinase II, cAMP/Protein Kinase A and ERK 1/2 on -Induced Apoptosis of Head Kidney Macrophages
- An Overview of Respiratory Syncytial Virus
- First Experimental Model of Enhanced Dengue Disease Severity through Maternally Acquired Heterotypic Dengue Antibodies
- Binding of Glutathione to Enterovirus Capsids Is Essential for Virion Morphogenesis
- IFITM3 Restricts Influenza A Virus Entry by Blocking the Formation of Fusion Pores following Virus-Endosome Hemifusion
- Parasite Fate and Involvement of Infected Cells in the Induction of CD4 and CD8 T Cell Responses to
- Deficient IFN Signaling by Myeloid Cells Leads to MAVS-Dependent Virus-Induced Sepsis
- Pernicious Pathogens or Expedient Elements of Inheritance: The Significance of Yeast Prions
- The HMW1C-Like Glycosyltransferases—An Enzyme Family with a Sweet Tooth for Simple Sugars
- The Expanding Functions of Cellular Helicases: The Tombusvirus RNA Replication Enhancer Co-opts the Plant eIF4AIII-Like AtRH2 and the DDX5-Like AtRH5 DEAD-Box RNA Helicases to Promote Viral Asymmetric RNA Replication
- Mining Herbaria for Plant Pathogen Genomes: Back to the Future
- Inferring Influenza Infection Attack Rate from Seroprevalence Data
- A Human Lung Xenograft Mouse Model of Nipah Virus Infection
- Mast Cells Expedite Control of Pulmonary Murine Cytomegalovirus Infection by Enhancing the Recruitment of Protective CD8 T Cells to the Lungs
- Cytosolic Peroxidases Protect the Lysosome of Bloodstream African Trypanosomes from Iron-Mediated Membrane Damage
- Abortive T Follicular Helper Development Is Associated with a Defective Humoral Response in -Infected Macaques
- JC Polyomavirus Infection Is Strongly Controlled by Human Leucocyte Antigen Class II Variants
- Cationic Antimicrobial Peptides Promote Microbial Mutagenesis and Pathoadaptation in Chronic Infections
- Estimating the Fitness Advantage Conferred by Permissive Neuraminidase Mutations in Recent Oseltamivir-Resistant A(H1N1)pdm09 Influenza Viruses
- Progressive Accumulation of Activated ERK2 within Highly Stable ORF45-Containing Nuclear Complexes Promotes Lytic Gammaherpesvirus Infection
- Caspase-1-Like Regulation of the proPO-System and Role of ppA and Caspase-1-Like Cleaved Peptides from proPO in Innate Immunity
- Is Required for High Efficiency Viral Replication
- Modified Vaccinia Virus Ankara Triggers Type I IFN Production in Murine Conventional Dendritic Cells via a cGAS/STING-Mediated Cytosolic DNA-Sensing Pathway
- Evidence That Bank Vole PrP Is a Universal Acceptor for Prions
- Rapid Response to Selection, Competitive Release and Increased Transmission Potential of Artesunate-Selected Malaria Parasites
- Inactivation of Genes for Antigenic Variation in the Relapsing Fever Spirochete Reduces Infectivity in Mice and Transmission by Ticks
- Exposure-Dependent Control of Malaria-Induced Inflammation in Children
- A Neutralizing Anti-gH/gL Monoclonal Antibody Is Protective in the Guinea Pig Model of Congenital CMV Infection
- The Apical Complex Provides a Regulated Gateway for Secretion of Invasion Factors in
- A Highly Conserved Haplotype Directs Resistance to Toxoplasmosis and Its Associated Caspase-1 Dependent Killing of Parasite and Host Macrophage
- A Quantitative High-Resolution Genetic Profile Rapidly Identifies Sequence Determinants of Hepatitis C Viral Fitness and Drug Sensitivity
- Histone Deacetylase Inhibitor Romidepsin Induces HIV Expression in CD4 T Cells from Patients on Suppressive Antiretroviral Therapy at Concentrations Achieved by Clinical Dosing
- PLOS Pathogens
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- The 2010 Cholera Outbreak in Haiti: How Science Solved a Controversy
- , , , Genetic Variability: Cryptic Biological Species or Clonal Near-Clades?
- Efficient Parvovirus Replication Requires CRL4-Targeted Depletion of p21 to Prevent Its Inhibitory Interaction with PCNA
- An Overview of Respiratory Syncytial Virus
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy