-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
A Quantitative High-Resolution Genetic Profile Rapidly Identifies Sequence Determinants of Hepatitis C Viral Fitness and Drug Sensitivity
The emergence of drug resistance during antiviral treatment limits treatment options and poses challenges to pharmaceutical development. Meanwhile, the search for novel antiviral compounds with chemical genetic screens has led to the identification of antiviral agents with undefined drug mechanisms. Daclatasvir, an effective NS5A inhibitor, is one such example. In traditional methods to identify critical residues governing drug-protein interactions, wild type virus is passaged under drug treatment pressure, enabling the identification of resistant mutations evolved after multiple viral passages. However, this method only characterizes a fraction of the positively selected variants. Here we have simultaneously quantified the relative change in replication fitness as well as the relative sensitivity to Daclatasvir for all possible single amino acid mutations in the NS5A domain IA, thereby identifying the entire panel of positions that interact with the drug. Using mathematical models, we predicted which mutations pose the greatest risk of causing emergence of resistance under different scenarios of treatment compliance. The mutant fitness and drug-sensitivity profiles obtained can also inform the patient-specific use of Daclatasvir and may facilitate the development of second-generation drugs with a higher genetic barrier to resistance.
Vyšlo v časopise: A Quantitative High-Resolution Genetic Profile Rapidly Identifies Sequence Determinants of Hepatitis C Viral Fitness and Drug Sensitivity. PLoS Pathog 10(4): e32767. doi:10.1371/journal.ppat.1004064
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004064Souhrn
The emergence of drug resistance during antiviral treatment limits treatment options and poses challenges to pharmaceutical development. Meanwhile, the search for novel antiviral compounds with chemical genetic screens has led to the identification of antiviral agents with undefined drug mechanisms. Daclatasvir, an effective NS5A inhibitor, is one such example. In traditional methods to identify critical residues governing drug-protein interactions, wild type virus is passaged under drug treatment pressure, enabling the identification of resistant mutations evolved after multiple viral passages. However, this method only characterizes a fraction of the positively selected variants. Here we have simultaneously quantified the relative change in replication fitness as well as the relative sensitivity to Daclatasvir for all possible single amino acid mutations in the NS5A domain IA, thereby identifying the entire panel of positions that interact with the drug. Using mathematical models, we predicted which mutations pose the greatest risk of causing emergence of resistance under different scenarios of treatment compliance. The mutant fitness and drug-sensitivity profiles obtained can also inform the patient-specific use of Daclatasvir and may facilitate the development of second-generation drugs with a higher genetic barrier to resistance.
Zdroje
1. Chan M (2011) Antimicrobial resistance: no action today, no cure tomorrow. Atlanta, GA 30333, USA: Center of Disease Control and Prevention.
2. WuNC, YoungAP, DandekarS, WijersuriyaH, Al-MawsawiLQ, et al. (2013) Systematic Identification of H274Y Compensatory Mutations in Influenza A Virus Neuraminidase by High-Throughput Screening. Journal of Virology 87 : 1193–1199.
3. Maisnier-PatinS, AnderssonDI (2004) Adaptation to the deleterious effects of antimicrobial drug resistance mutations by compensatory evolution. Res Microbiol 155 : 360–369.
4. GhanyMG, StraderDB, ThomasDL, SeeffLB (2009) Diagnosis, management, and treatment of hepatitis C: an update. Hepatology 49 : 1335–1374.
5. FeldJJ, HoofnagleJH (2005) Mechanism of action of interferon and ribavirin in treatment of hepatitis C. Nature 436 : 967–972.
6. JacobsonIM, McHutchisonJG, DusheikoG, Di BisceglieAM, ReddyKR, et al. (2011) Telaprevir for previously untreated chronic hepatitis C virus infection. N Engl J Med 364 : 2405–2416.
7. PoordadF, McConeJJr, BaconBR, BrunoS, MannsMP, et al. (2011) Boceprevir for untreated chronic HCV genotype 1 infection. N Engl J Med 364 : 1195–1206.
8. RobinsonM, TianY, DelaneyWEt, GreensteinAE (2011) Preexisting drug-resistance mutations reveal unique barriers to resistance for distinct antivirals. Proc Natl Acad Sci U S A 108 : 10290–10295.
9. ThompsonAJ, LocarniniSA, BeardMR (2011) Resistance to anti-HCV protease inhibitors. Curr Opin Virol 1 : 599–606.
10. LohmannV, KörnerF, KochJ-O, HerianU, TheilmannL, et al. (1999) Replication of Subgenomic Hepatitis C Virus RNAs in a Hepatoma Cell Line. Science 285 : 110–113.
11. BlightKJ, KolykhalovAA, RiceCM (2000) Efficient Initiation of HCV RNA Replication in Cell Culture. Science 290 : 1972–1974.
12. WakitaT, PietschmannT, KatoT, DateT, MiyamotoM, et al. (2005) Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 11 : 791–796.
13. LindenbachBD, EvansMJ, SyderAJ, WolkB, TellinghuisenTL, et al. (2005) Complete replication of hepatitis C virus in cell culture. Science 309 : 623–626.
14. ZhongJ, GastaminzaP, ChengG, KapadiaS, KatoT, et al. (2005) Robust hepatitis C virus infection in vitro. Proc Natl Acad Sci U S A 102 : 9294–9299.
15. De ClercqE (2012) The race for interferon-free HCV therapies: a snapshot by the spring of 2012. Rev Med Virol
16. ScheelTK, RiceCM (2013) Understanding the hepatitis C virus life cycle paves the way for highly effective therapies. Nat Med 19 : 837–849.
17. BeldaO, Targett-AdamsP (2012) Small molecule inhibitors of the hepatitis C virus-encoded NS5A protein. Virus Research 170 : 1–14.
18. AghemoA, De FrancescoR (2013) New horizons in hepatitis C antiviral therapy with direct-acting antivirals. Hepatology 58 : 428–438.
19. LemmJA, O'BoyleD, LiuM, NowerPT, ColonnoR, et al. (2010) Identification of Hepatitis C Virus NS5A Inhibitors. Journal of Virology 84 : 482–491.
20. GaoM, NettlesRE, BelemaM, SnyderLB, NguyenVN, et al. (2010) Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect. Nature 465 : 96–100.
21. TellinghuisenTL, EvansMJ, von HahnT, YouS, RiceCM (2007) Studying Hepatitis C Virus: Making the Best of a Bad Virus. Journal of Virology 81 : 8853–8867.
22. GuedjJ, DahariH, RongL, SansoneND, NettlesRE, et al. (2013) Modeling shows that the NS5A inhibitor daclatasvir has two modes of action and yields a shorter estimate of the hepatitis C virus half-life. Proceedings of the National Academy of Sciences 110 : 3991–3996.
23. LeeC, MaH, HangJQ, LevequeV, SklanEH, et al. (2011) The hepatitis C virus NS5A inhibitor (BMS-790052) alters the subcellular localization of the NS5A non-structural viral protein. Virology 414 : 10–18.
24. FridellRA, QiuD, WangC, ValeraL, GaoM (2010) Resistance Analysis of the Hepatitis C Virus NS5A Inhibitor BMS-790052 in an In Vitro Replicon System. Antimicrobial Agents and Chemotherapy 54 : 3641–3650.
25. WangC, HuangH, ValeraL, SunJ-H, O'BoyleDR, et al. (2012) Hepatitis C Virus RNA Elimination and Development of Resistance in Replicon Cells Treated with BMS-790052. Antimicrobial Agents and Chemotherapy 56 : 1350–1358.
26. WangC, JiaL, HuangH, QiuD, ValeraL, et al. (2012) In vitro activity of BMS-790052 on hepatitis C virus genotype 4 NS5A. Antimicrob Agents Chemother 56 : 1588–1590.
27. FowlerDM, ArayaCL, FleishmanSJ, KelloggEH, StephanyJJ, et al. (2010) High-resolution mapping of protein sequence-function relationships. Nat Meth 7 : 741–746.
28. MoyaA, ElenaSF, BrachoA, MirallesR, BarrioE (2000) The evolution of RNA viruses: A population genetics view. Proc Natl Acad Sci U S A 97 : 6967–6973.
29. JonesCT, MurrayCL, EastmanDK, TasselloJ, RiceCM (2007) Hepatitis C Virus p7 and NS2 Proteins Are Essential for Production of Infectious Virus. Journal of Virology 81 : 8374–8383.
30. PeninFβ, BrassV, AppelN, RamboarinaS, MontserretR, et al. (2004) Structure and Function of the Membrane Anchor Domain of Hepatitis C Virus Nonstructural Protein 5A. Journal of Biological Chemistry 279 : 40835–40843.
31. ElazarM, CheongKH, LiuP, GreenbergHB, RiceCM, et al. (2003) Amphipathic Helix-Dependent Localization of NS5A Mediates Hepatitis C Virus RNA Replication. Journal of Virology 77 : 6055–6061.
32. SongJ, Nagano-FujiiM, WangF, FloreseR, FujitaT, et al. (2000) Nuclear localization and intramolecular cleavage of N-terminally deleted NS5A protein of hepatitis C virus. Virus Research 69 : 109–117.
33. ChoN-J, CheongKH, LeeC, FrankCW, GlennJS (2007) Binding Dynamics of Hepatitis C Virus' NS5A Amphipathic Peptide to Cell and Model Membranes. Journal of Virology 81 : 6682–6689.
34. BrassV, BieckE, MontserretR, WolkB, HellingsJA, et al. (2002) An Amino-terminal Amphipathic α-Helix Mediates Membrane Association of the Hepatitis C Virus Nonstructural Protein 5A. Journal of Biological Chemistry 277 : 8130–8139.
35. KayBK, WilliamsonMP, SudolM (2000) The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J 14 : 231–241.
36. AdzhubeiAA, SternbergMJ, MakarovAA (2013) Polyproline-II Helix in Proteins: Structure and Function. J Mol Biol 425 : 2100–2132.
37. TellinghuisenTL, MarcotrigianoJ, RiceCM (2005) Structure of the zinc-binding domain of an essential component of the hepatitis C virus replicase. Nature 435 : 374–379.
38. HuangL, HwangJ, SharmaSD, HargittaiMRS, ChenY, et al. (2005) Hepatitis C Virus Nonstructural Protein 5A (NS5A) Is an RNA-binding Protein. Journal of Biological Chemistry 280 : 36417–36428.
39. FosterTL, BelyaevaT, StonehouseNJ, PearsonAR, HarrisM (2010) All three domains of the hepatitis C virus nonstructural NS5A protein contribute to RNA binding. J Virol 84 : 9267–9277.
40. HwangJ, HuangL, CordekDG, VaughanR, ReynoldsSL, et al. (2010) Hepatitis C virus nonstructural protein 5A: biochemical characterization of a novel structural class of RNA-binding proteins. J Virol 84 : 12480–12491.
41. ScheelTKH, GottweinJM, MikkelsenLS, JensenTB, BukhJ (2011) Recombinant HCV Variants With NS5A From Genotypes 1‚7 Have Different Sensitivities to an NS5A Inhibitor but Not Interferon-α. Gastroenterology 140 : 1032–1042.e1036.
42. FridellRA, WangC, SunJ-H, O'BoyleDR, NowerP, et al. (2011) Genotypic and phenotypic analysis of variants resistant to hepatitis C virus nonstructural protein 5A replication complex inhibitor BMS-790052 in Humans: In Vitro and In Vivo Correlations. Hepatology 54 : 1924–1935.
43. NeumannAU, LamNP, DahariH, GretchDR, WileyTE, et al. (1998) Hepatitis C Viral Dynamics in Vivo and the Antiviral Efficacy of Interferon-α Therapy. Science 282 : 103–107.
44. RongL, DahariH, RibeiroRM, PerelsonAS (2010) Rapid emergence of protease inhibitor resistance in hepatitis C virus. Sci Transl Med 2 : 30ra32.
45. KeR, LoverdoC, QiH, OlsonCA, WuNC, et al. (2013) Modelling clinical data shows active tissue concentration of daclatasvir is 10-fold lower than its plasma concentration. Journal of Antimicrobial Chemotherapy 69 : 724–727.
46. SulkowskiMS, GardinerDF, Rodriguez-TorresM, ReddyKR, HassaneinT, et al. (2013) 1417 Sustained Virologic Response With Daclatasvir Plus Sofosbuvir ± Ribavirin (Rbv) In Chronic Hcv Genotype (Gt) 1-Infected Patients Who Previously Failed Telaprevir (Tvr) Or Boceprevir (Boc). Journal of Hepatology 58, Supplement 1: S570.
47. MannsMP, von HahnT (2013) Novel therapies for hepatitis C - one pill fits all? Nat Rev Drug Discov 12 : 595–610.
48. LoveRA, BrodskyO, HickeyMJ, WellsPA, CroninCnN (2009) Crystal Structure of a Novel Dimeric Form of NS5A Domain I Protein from Hepatitis C Virus. Journal of Virology 83 : 4395–4403.
49. Moradpour D, Penin F (2013) Hepatitis C Virus Proteins: From Structure to Function. In: Bartenschlager R, editor. Hepatitis C Virus: From Molecular Virology to Antiviral Therapy. Springer Berlin Heidelberg. pp. 113–142.
50. BergerKL, CooperJD, HeatonNS, YoonR, OaklandTE, et al. (2009) Roles for endocytic trafficking and phosphatidylinositol 4-kinase III alpha in hepatitis C virus replication. Proc Natl Acad Sci U S A 106 : 7577–7582.
51. BergerKL, KellySM, JordanTX, TartellMA, RandallG (2011) Hepatitis C virus stimulates the phosphatidylinositol 4-kinase III alpha-dependent phosphatidylinositol 4-phosphate production that is essential for its replication. J Virol 85 : 8870–8883.
52. LimYS, HwangSB (2011) Hepatitis C virus NS5A protein interacts with phosphatidylinositol 4-kinase type IIIalpha and regulates viral propagation. J Biol Chem 286 : 11290–11298.
53. ReissS, RebhanI, BackesP, Romero-BreyI, ErfleH, et al. (2011) Recruitment and activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the membranous replication compartment. Cell Host Microbe 9 : 32–45.
54. TaiAW, SalloumS (2011) The role of the phosphatidylinositol 4-kinase PI4KA in hepatitis C virus-induced host membrane rearrangement. PLoS One 6: e26300.
55. ReissS, HarakC, Romero-BreyI, RadujkovicD, KleinR, et al. (2013) The Lipid Kinase Phosphatidylinositol-4 Kinase III Alpha Regulates the Phosphorylation Status of Hepatitis C Virus NS5A. PLoS Pathog 9: e1003359.
56. NettlesRE, GaoM, BifanoM, ChungE, PerssonA, et al. (2011) Multiple ascending dose study of BMS-790052, a nonstructural protein 5A replication complex inhibitor, in patients infected with hepatitis C virus genotype 1. Hepatology 54 : 1956–1965.
57. WangC, SunJH, O'BoyleDR2nd, NowerP, ValeraL, et al. (2013) Persistence of resistant variants in hepatitis C virus-infected patients treated with the NS5A replication complex inhibitor daclatasvir. Antimicrob Agents Chemother 57 : 2054–2065.
58. PolS, GhalibRH, RustgiVK, MartorellC, EversonGT, et al. (2012) Daclatasvir for previously untreated chronic hepatitis C genotype-1 infection: a randomised, parallel-group, double-blind, placebo-controlled, dose-finding, phase 2a trial. Lancet Infect Dis 12 : 671–677.
59. LokAS, GardinerDF, LawitzE, MartorellC, EversonGT, et al. (2012) Preliminary study of two antiviral agents for hepatitis C genotype 1. N Engl J Med 366 : 216–224.
60. RibeiroRM, LiH, WangS, StoddardMB, LearnGH, et al. (2012) Quantifying the diversification of hepatitis C virus (HCV) during primary infection: estimates of the in vivo mutation rate. PLoS Pathog 8: e1002881.
61. RongL, GuedjJ, DahariH, CoffieldDJJr, LeviM, et al. (2013) Analysis of hepatitis C virus decline during treatment with the protease inhibitor danoprevir using a multiscale model. PLoS Comput Biol 9: e1002959.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium
Článek Affinity Proteomics Reveals Elevated Muscle Proteins in Plasma of Children with Cerebral MalariaČlánek The Transcriptional Activator LdtR from ‘ Liberibacter asiaticus’ Mediates Osmotic Stress ToleranceČlánek Complement-Related Proteins Control the Flavivirus Infection of by Inducing Antimicrobial PeptidesČlánek Fungal Chitin Dampens Inflammation through IL-10 Induction Mediated by NOD2 and TLR9 ActivationČlánek Parasite Fate and Involvement of Infected Cells in the Induction of CD4 and CD8 T Cell Responses to
Článok vyšiel v časopisePLOS Pathogens
Najčítanejšie tento týždeň
2014 Číslo 4- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
-
Všetky články tohto čísla
- , , , Genetic Variability: Cryptic Biological Species or Clonal Near-Clades?
- Early Mortality Syndrome Outbreaks: A Microbial Management Issue in Shrimp Farming?
- Wormholes in Host Defense: How Helminths Manipulate Host Tissues to Survive and Reproduce
- Plastic Proteins and Monkey Blocks: How Lentiviruses Evolved to Replicate in the Presence of Primate Restriction Factors
- The 2010 Cholera Outbreak in Haiti: How Science Solved a Controversy
- Affinity Proteomics Reveals Elevated Muscle Proteins in Plasma of Children with Cerebral Malaria
- Noncanonical Role for the Host Vps4 AAA+ ATPase ESCRT Protein in the Formation of Replicase
- Efficient Parvovirus Replication Requires CRL4-Targeted Depletion of p21 to Prevent Its Inhibitory Interaction with PCNA
- Host-to-Pathogen Gene Transfer Facilitated Infection of Insects by a Pathogenic Fungus
- The Transcriptional Activator LdtR from ‘ Liberibacter asiaticus’ Mediates Osmotic Stress Tolerance
- Coxsackievirus B Exits the Host Cell in Shed Microvesicles Displaying Autophagosomal Markers
- TCR Affinity Associated with Functional Differences between Dominant and Subdominant SIV Epitope-Specific CD8 T Cells in Rhesus Monkeys
- Coxsackievirus-Induced miR-21 Disrupts Cardiomyocyte Interactions via the Downregulation of Intercalated Disk Components
- Ligands of MDA5 and RIG-I in Measles Virus-Infected Cells
- Kind Discrimination and Competitive Exclusion Mediated by Contact-Dependent Growth Inhibition Systems Shape Biofilm Community Structure
- Structural Differences Explain Diverse Functions of Actins
- HSCARG Negatively Regulates the Cellular Antiviral RIG-I Like Receptor Signaling Pathway by Inhibiting TRAF3 Ubiquitination Recruiting OTUB1
- Vaginitis: When Opportunism Knocks, the Host Responds
- Complement-Related Proteins Control the Flavivirus Infection of by Inducing Antimicrobial Peptides
- Fungal Chitin Dampens Inflammation through IL-10 Induction Mediated by NOD2 and TLR9 Activation
- Microbial Pathogens Trigger Host DNA Double-Strand Breaks Whose Abundance Is Reduced by Plant Defense Responses
- Alveolar Macrophages Are Essential for Protection from Respiratory Failure and Associated Morbidity following Influenza Virus Infection
- An Interaction between Glutathione and the Capsid Is Required for the Morphogenesis of C-Cluster Enteroviruses
- Concerted Spatio-Temporal Dynamics of Imported DNA and ComE DNA Uptake Protein during Gonococcal Transformation
- Potent Dengue Virus Neutralization by a Therapeutic Antibody with Low Monovalent Affinity Requires Bivalent Engagement
- Regulation of Human T-Lymphotropic Virus Type I Latency and Reactivation by HBZ and Rex
- Functionally Redundant RXLR Effectors from Act at Different Steps to Suppress Early flg22-Triggered Immunity
- The Pathogenic Mechanism of the Virulence Factor, Mycolactone, Depends on Blockade of Protein Translocation into the ER
- Role of Calmodulin-Calmodulin Kinase II, cAMP/Protein Kinase A and ERK 1/2 on -Induced Apoptosis of Head Kidney Macrophages
- An Overview of Respiratory Syncytial Virus
- First Experimental Model of Enhanced Dengue Disease Severity through Maternally Acquired Heterotypic Dengue Antibodies
- Binding of Glutathione to Enterovirus Capsids Is Essential for Virion Morphogenesis
- IFITM3 Restricts Influenza A Virus Entry by Blocking the Formation of Fusion Pores following Virus-Endosome Hemifusion
- Parasite Fate and Involvement of Infected Cells in the Induction of CD4 and CD8 T Cell Responses to
- Deficient IFN Signaling by Myeloid Cells Leads to MAVS-Dependent Virus-Induced Sepsis
- Pernicious Pathogens or Expedient Elements of Inheritance: The Significance of Yeast Prions
- The HMW1C-Like Glycosyltransferases—An Enzyme Family with a Sweet Tooth for Simple Sugars
- The Expanding Functions of Cellular Helicases: The Tombusvirus RNA Replication Enhancer Co-opts the Plant eIF4AIII-Like AtRH2 and the DDX5-Like AtRH5 DEAD-Box RNA Helicases to Promote Viral Asymmetric RNA Replication
- Mining Herbaria for Plant Pathogen Genomes: Back to the Future
- Inferring Influenza Infection Attack Rate from Seroprevalence Data
- A Human Lung Xenograft Mouse Model of Nipah Virus Infection
- Mast Cells Expedite Control of Pulmonary Murine Cytomegalovirus Infection by Enhancing the Recruitment of Protective CD8 T Cells to the Lungs
- Cytosolic Peroxidases Protect the Lysosome of Bloodstream African Trypanosomes from Iron-Mediated Membrane Damage
- Abortive T Follicular Helper Development Is Associated with a Defective Humoral Response in -Infected Macaques
- JC Polyomavirus Infection Is Strongly Controlled by Human Leucocyte Antigen Class II Variants
- Cationic Antimicrobial Peptides Promote Microbial Mutagenesis and Pathoadaptation in Chronic Infections
- Estimating the Fitness Advantage Conferred by Permissive Neuraminidase Mutations in Recent Oseltamivir-Resistant A(H1N1)pdm09 Influenza Viruses
- Progressive Accumulation of Activated ERK2 within Highly Stable ORF45-Containing Nuclear Complexes Promotes Lytic Gammaherpesvirus Infection
- Caspase-1-Like Regulation of the proPO-System and Role of ppA and Caspase-1-Like Cleaved Peptides from proPO in Innate Immunity
- Is Required for High Efficiency Viral Replication
- Modified Vaccinia Virus Ankara Triggers Type I IFN Production in Murine Conventional Dendritic Cells via a cGAS/STING-Mediated Cytosolic DNA-Sensing Pathway
- Evidence That Bank Vole PrP Is a Universal Acceptor for Prions
- Rapid Response to Selection, Competitive Release and Increased Transmission Potential of Artesunate-Selected Malaria Parasites
- Inactivation of Genes for Antigenic Variation in the Relapsing Fever Spirochete Reduces Infectivity in Mice and Transmission by Ticks
- Exposure-Dependent Control of Malaria-Induced Inflammation in Children
- A Neutralizing Anti-gH/gL Monoclonal Antibody Is Protective in the Guinea Pig Model of Congenital CMV Infection
- The Apical Complex Provides a Regulated Gateway for Secretion of Invasion Factors in
- A Highly Conserved Haplotype Directs Resistance to Toxoplasmosis and Its Associated Caspase-1 Dependent Killing of Parasite and Host Macrophage
- A Quantitative High-Resolution Genetic Profile Rapidly Identifies Sequence Determinants of Hepatitis C Viral Fitness and Drug Sensitivity
- Histone Deacetylase Inhibitor Romidepsin Induces HIV Expression in CD4 T Cells from Patients on Suppressive Antiretroviral Therapy at Concentrations Achieved by Clinical Dosing
- PLOS Pathogens
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- The 2010 Cholera Outbreak in Haiti: How Science Solved a Controversy
- , , , Genetic Variability: Cryptic Biological Species or Clonal Near-Clades?
- Efficient Parvovirus Replication Requires CRL4-Targeted Depletion of p21 to Prevent Its Inhibitory Interaction with PCNA
- An Overview of Respiratory Syncytial Virus
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy