#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

γδ T Cells Confer Protection against Murine Cytomegalovirus (MCMV)


γδ T cells are unconventional T lymphocytes that play a unique role in host protection against pathogens. Human Cytomegalovirus (HCMV) is a widespread virus that can cause severe organ disease such as hepatitis and pneumonitis in immune-compromised patients. Our decade-long study conveys compelling evidence for the implication of human γδ T cells in the immune response against HCMV, but their protective role could not be formally demonstrated in humans. In the present study we use the murine model of CMV infection which allows the spatial and temporal analysis of viral spread and anti-viral immune responses. We show that, in the absence of αβ T cells, γδ T cells control MCMV-induced hepatitis, pneumonitis and death by restricting viral load in the liver, lungs and spleen. γδ T cells expand in these organs and display memory features that could be further incorporated into vaccination strategies. In conclusion, γδ T cells represent an important arm in the immune response against CMV infection that could be particularly important in the context of αβ T cell immune-suppression.


Vyšlo v časopise: γδ T Cells Confer Protection against Murine Cytomegalovirus (MCMV). PLoS Pathog 11(3): e32767. doi:10.1371/journal.ppat.1004702
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004702

Souhrn

γδ T cells are unconventional T lymphocytes that play a unique role in host protection against pathogens. Human Cytomegalovirus (HCMV) is a widespread virus that can cause severe organ disease such as hepatitis and pneumonitis in immune-compromised patients. Our decade-long study conveys compelling evidence for the implication of human γδ T cells in the immune response against HCMV, but their protective role could not be formally demonstrated in humans. In the present study we use the murine model of CMV infection which allows the spatial and temporal analysis of viral spread and anti-viral immune responses. We show that, in the absence of αβ T cells, γδ T cells control MCMV-induced hepatitis, pneumonitis and death by restricting viral load in the liver, lungs and spleen. γδ T cells expand in these organs and display memory features that could be further incorporated into vaccination strategies. In conclusion, γδ T cells represent an important arm in the immune response against CMV infection that could be particularly important in the context of αβ T cell immune-suppression.


Zdroje

1. Broers AE, van Der Holt R, van Esser JW, Gratama JW, Henzen-Logmans S, et al. (2000) Increased transplant-related morbidity and mortality in CMV-seropositive patients despite highly effective prevention of CMV disease after allogeneic T-cell-depleted stem cell transplantation. Blood 95: 2240–2245. 10733491

2. Craddock C, Szydlo RM, Dazzi F, Olavarria E, Cwynarski K, et al. (2001) Cytomegalovirus seropositivity adversely influences outcome after T-depleted unrelated donor transplant in patients with chronic myeloid leukaemia: the case for tailored graft-versus-host disease prophylaxis. Br J Haematol 112: 228–236. 11167809

3. Schmidt-Hieber M, Labopin M, Beelen D, Volin L, Ehninger G, et al. (2013) CMV serostatus has still an important prognostic impact in de novo acute leukemia patients after allogeneic stem cell transplantation: a report from the acute leukemia working party of EBMT. Blood 122: 3359–3364. doi: 10.1182/blood-2013-05-499830 24037724

4. Crough T, Khanna R (2009) Immunobiology of human cytomegalovirus: from bench to bedside. Clin Microbiol Rev 22: 76–98, Table of Contents. doi: 10.1128/CMR.00034-08 19136435

5. Dechanet J, Merville P, Lim A, Retiere C, Pitard V, et al. (1999) Implication of gammadelta T cells in the human immune response to cytomegalovirus. J Clin Invest 103: 1437–1449. 10330426

6. Ehl S, Schwarz K, Enders A, Duffner U, Pannicke U, et al. (2005) A variant of SCID with specific immune responses and predominance of gamma delta T cells. J Clin Invest 115: 3140–3148. 16211094

7. Vermijlen D, Brouwer M, Donner C, Liesnard C, Tackoen M, et al. (2010) Human cytomegalovirus elicits fetal gammadelta T cell responses in utero. J Exp Med 207: 807–821. doi: 10.1084/jem.20090348 20368575

8. Fornara C, Lilleri D, Revello MG, Furione M, Zavattoni M, et al. (2011) Kinetics of effector functions and phenotype of virus-specific and gammadelta T lymphocytes in primary human cytomegalovirus infection during pregnancy. J Clin Immunol 31: 1054–1064. doi: 10.1007/s10875-011-9577-8 21847524

9. Knight A, Madrigal AJ, Grace S, Sivakumaran J, Kottaridis P, et al. (2010) The role of Vdelta2-negative gammadelta T cells during cytomegalovirus reactivation in recipients of allogeneic stem cell transplantation. Blood 116: 2164–2172. doi: 10.1182/blood-2010-01-255166 20576814

10. Pitard V, Roumanes D, Lafarge X, Couzi L, Garrigue I, et al. (2008) Long-term expansion of effector/memory Vdelta2-gammadelta T cells is a specific blood signature of CMV infection. Blood 112: 1317–1324. doi: 10.1182/blood-2008-01-136713 18539896

11. Roux A, Mourin G, Larsen M, Fastenackels S, Urrutia A, et al. (2013) Differential Impact of Age and Cytomegalovirus Infection on the gammadelta T Cell Compartment. J Immunol 191: 1300–1306. doi: 10.4049/jimmunol.1202940 23817410

12. Wistuba-Hamprecht K, Frasca D, Blomberg B, Pawelec G, Derhovanessian E (2013) Age-associated alterations in gammadelta T-cells are present predominantly in individuals infected with Cytomegalovirus. Immun Ageing 10: 26. doi: 10.1186/1742-4933-10-26 23822093

13. Lafarge X, Merville P, Cazin MC, Berge F, Potaux L, et al. (2001) Cytomegalovirus infection in transplant recipients resolves when circulating gammadelta T lymphocytes expand, suggesting a protective antiviral role. J Infect Dis 184: 533–541. 11494158

14. Couzi L, Pitard V, Netzer S, Garrigue I, Lafon ME, et al. (2009) Common features of gammadelta T cells and CD8(+) alphabeta T cells responding to human cytomegalovirus infection in kidney transplant recipients. J Infect Dis 200: 1415–1424. doi: 10.1086/644509 19780672

15. Halary F, Pitard V, Dlubek D, Krzysiek R, de la Salle H, et al. (2005) Shared reactivity of V{delta}2(neg) {gamma}{delta} T cells against cytomegalovirus-infected cells and tumor intestinal epithelial cells. J Exp Med 201: 1567–1578. 15897274

16. Couzi L, Pitard V, Sicard X, Garrigue I, Hawchar O, et al. (2012) Antibody-dependent anti-cytomegalovirus activity of human gammadelta T cells expressing CD16 (FcgammaRIIIa). Blood 119: 1418–1427. doi: 10.1182/blood-2011-06-363655 22180442

17. Vantourout P, Hayday A (2013) Six-of-the-best: unique contributions of gammadelta T cells to immunology. Nat Rev Immunol 13: 88–100. doi: 10.1038/nri3384 23348415

18. Willcox CR, Pitard V, Netzer S, Couzi L, Salim M, et al. (2012) Cytomegalovirus and tumor stress surveillance by binding of a human gammadelta T cell antigen receptor to endothelial protein C receptor. Nat Immunol 13: 872–879. doi: 10.1038/ni.2394 22885985

19. Bonneville M, O'Brien RL, Born WK (2010) Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol 10: 467–478. doi: 10.1038/nri2781 20539306

20. Scheper W, van Dorp S, Kersting S, Pietersma F, Lindemans C, et al. (2013) gammadeltaT cells elicited by CMV reactivation after allo-SCT cross-recognize CMV and leukemia. Leukemia 27: 1328–1338. doi: 10.1038/leu.2012.374 23277330

21. Couzi L, Levaillant Y, Jamai A, Pitard V, Lassalle R, et al. (2010) Cytomegalovirus-induced gammadelta T cells associate with reduced cancer risk after kidney transplantation. J Am Soc Nephrol 21: 181–188. doi: 10.1681/ASN.2008101072 19713314

22. Godder KT, Henslee-Downey PJ, Mehta J, Park BS, Chiang KY, et al. (2007) Long term disease-free survival in acute leukemia patients recovering with increased gammadelta T cells after partially mismatched related donor bone marrow transplantation. Bone Marrow Transplant 39: 751–757. 17450185

23. Behrendt CE, Rosenthal J, Bolotin E, Nakamura R, Zaia J, et al. (2009) Donor and recipient CMV serostatus and outcome of pediatric allogeneic HSCT for acute leukemia in the era of CMV-preemptive therapy. Biol Blood Marrow Transplant 15: 54–60. doi: 10.1016/j.bbmt.2008.10.023 19135943

24. Elmaagacli AH, Steckel NK, Koldehoff M, Hegerfeldt Y, Trenschel R, et al. (2011) Early human cytomegalovirus replication after transplantation is associated with a decreased relapse risk: evidence for a putative virus-versus-leukemia effect in acute myeloid leukemia patients. Blood 118: 1402–1412. doi: 10.1182/blood-2010-08-304121 21540462

25. Krmpotic A, Bubic I, Polic B, Lucin P, Jonjic S (2003) Pathogenesis of murine cytomegalovirus infection. Microbes Infect 5: 1263–1277. 14623023

26. Ninomiya T, Takimoto H, Matsuzaki G, Hamano S, Yoshida H, et al. (2000) Vgamma1+ gammadelta T cells play protective roles at an early phase of murine cytomegalovirus infection through production of interferon-gamma. Immunology 99: 187–194. 10692035

27. Trgovcich J, Stimac D, Polic B, Krmpotic A, Pernjak-Pugel E, et al. (2000) Immune responses and cytokine induction in the development of severe hepatitis during acute infections with murine cytomegalovirus. Arch Virol 145: 2601–2618. 11205107

28. Renard V, Ardouin L, Malissen M, Milon G, Lebastard M, et al. (1995) Normal development and function of natural killer cells in CD3 epsilon delta 5/delta 5 mutant mice. Proc Natl Acad Sci U S A 92: 7545–7549. 7638228

29. Heilig JS, Tonegawa S (1986) Diversity of murine gamma genes and expression in fetal and adult T lymphocytes. Nature 322: 836–840. 2943999

30. Philpott KL, Viney JL, Kay G, Rastan S, Gardiner EM, et al. (1992) Lymphoid development in mice congenitally lacking T cell receptor alpha beta-expressing cells. Science 256: 1448–1452. 1604321

31. Ribot JC, deBarros A, Pang DJ, Neves JF, Peperzak V, et al. (2009) CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin 17-producing gammadelta T cell subsets. Nat Immunol 10: 427–436. doi: 10.1038/ni.1717 19270712

32. Schmolka N, Serre K, Grosso AR, Rei M, Pennington DJ, et al. (2013) Epigenetic and transcriptional signatures of stable versus plastic differentiation of proinflammatory gammadelta T cell subsets. Nat Immunol 14: 1093–1100. doi: 10.1038/ni.2702 23995235

33. Loh J, Chu DT, O'Guin AK, Yokoyama WM, Virgin HWt (2005) Natural killer cells utilize both perforin and gamma interferon to regulate murine cytomegalovirus infection in the spleen and liver. J Virol 79: 661–667. 15596864

34. Gardner T, Chen Q, Jin Y, Ajuebor MN (2009) Characterization of the role of TCR gammadelta in NK cell accumulation during viral liver inflammation. Exp Mol Pathol 86: 32–35. doi: 10.1016/j.yexmp.2008.10.005 19028491

35. Dokun AO, Kim S, Smith HR, Kang HS, Chu DT, et al. (2001) Specific and nonspecific NK cell activation during virus infection. Nat Immunol 2: 951–956. 11550009

36. Robbins SH, Tessmer MS, Mikayama T, Brossay L (2004) Expansion and contraction of the NK cell compartment in response to murine cytomegalovirus infection. J Immunol 173: 259–266. 15210783

37. Sciammas R, Kodukula P, Tang Q, Hendricks RL, Bluestone JA (1997) T cell receptor-gamma/delta cells protect mice from herpes simplex virus type 1-induced lethal encephalitis. J Exp Med 185: 1969–1975. 9166426

38. Smith AL, Hayday AC (2000) An alphabeta T-cell-independent immunoprotective response towards gut coccidia is supported by gammadelta cells. Immunology 101: 325–332. 11106935

39. Morgan NV, Goddard S, Cardno TS, McDonald D, Rahman F, et al. (2011) Mutation in the TCRalpha subunit constant gene (TRAC) leads to a human immunodeficiency disorder characterized by a lack of TCRalphabeta+ T cells. J Clin Invest 121: 695–702. doi: 10.1172/JCI41931 21206088

40. Ramsburg E, Tigelaar R, Craft J, Hayday A (2003) Age-dependent requirement for gammadelta T cells in the primary but not secondary protective immune response against an intestinal parasite. J Exp Med 198: 1403–1414. 14597739

41. Vermijlen D, Prinz I (2014) Ontogeny of Innate T Lymphocytes—Some Innate Lymphocytes are More Innate than Others. Front Immunol 5: 486. doi: 10.3389/fimmu.2014.00486 25346734

42. Hsu KM, Pratt JR, Akers WJ, Achilefu SI, Yokoyama WM (2009) Murine cytomegalovirus displays selective infection of cells within hours after systemic administration. J Gen Virol 90: 33–43. doi: 10.1099/vir.0.006668-0 19088270

43. Sumaria N, van Dommelen SL, Andoniou CE, Smyth MJ, Scalzo AA, et al. (2009) The roles of interferon-gamma and perforin in antiviral immunity in mice that differ in genetically determined NK-cell-mediated antiviral activity. Immunol Cell Biol 87: 559–566. doi: 10.1038/icb.2009.41 19564888

44. Dieli F, Ivanyi J, Marsh P, Williams A, Naylor I, et al. (2003) Characterization of lung gamma delta T cells following intranasal infection with Mycobacterium bovis bacillus Calmette-Guerin. J Immunol 170: 463–469. 12496432

45. Kirby AC, Newton DJ, Carding SR, Kaye PM (2007) Evidence for the involvement of lung-specific gammadelta T cell subsets in local responses to Streptococcus pneumoniae infection. Eur J Immunol 37: 3404–3413. 18022862

46. Dodd J, Riffault S, Kodituwakku JS, Hayday AC, Openshaw PJ (2009) Pulmonary V gamma 4+ gamma delta T cells have proinflammatory and antiviral effects in viral lung disease. J Immunol 182: 1174–1181. 19124761

47. Huber SA, Graveline D, Newell MK, Born WK, O'Brien RL (2000) V gamma 1+ T cells suppress and V gamma 4+ T cells promote susceptibility to coxsackievirus B3-induced myocarditis in mice. J Immunol 165: 4174–4181. 11035049

48. Welte T, Lamb J, Anderson JF, Born WK, O'Brien RL, et al. (2008) Role of two distinct gammadelta T cell subsets during West Nile virus infection. FEMS Immunol Med Microbiol 53: 275–283. doi: 10.1111/j.1574-695X.2008.00430.x 18513355

49. Sandstrom A, Scharf L, McRae G, Hawk AJ, Meredith SC, et al. (2012) gammadelta T cell receptors recognize the non-classical major histocompatibility complex (MHC) molecule T22 via conserved anchor residues in a MHC peptide-like fashion. J Biol Chem 287: 6035–6043. doi: 10.1074/jbc.M111.333153 22215668

50. Andrew EM, Newton DJ, Dalton JE, Egan CE, Goodwin SJ, et al. (2005) Delineation of the function of a major gamma delta T cell subset during infection. J Immunol 175: 1741–1750. 16034115

51. Sheridan BS, Romagnoli PA, Pham QM, Fu HH, Alonzo F 3rd, et al. (2013) gammadelta T cells exhibit multifunctional and protective memory in intestinal tissues. Immunity 39: 184–195. doi: 10.1016/j.immuni.2013.06.015 23890071

52. Murphy AG, O'Keeffe KM, Lalor SJ, Maher BM, Mills KH, et al. (2014) Staphylococcus aureus infection of mice expands a population of memory gammadelta T cells that are protective against subsequent infection. J Immunol 192: 3697–3708. doi: 10.4049/jimmunol.1303420 24623128

53. Min-Oo G, Kamimura Y, Hendricks DW, Nabekura T, Lanier LL (2013) Natural killer cells: walking three paths down memory lane. Trends Immunol 34: 251–258. doi: 10.1016/j.it.2013.02.005 23499559

54. Malissen M, Gillet A, Ardouin L, Bouvier G, Trucy J, et al. (1995) Altered T cell development in mice with a targeted mutation of the CD3-epsilon gene. EMBO J 14: 4641–4653. 7588594

55. Goldman JP, Blundell MP, Lopes L, Kinnon C, Di Santo JP, et al. (1998) Enhanced human cell engraftment in mice deficient in RAG2 and the common cytokine receptor gamma chain. Br J Haematol 103: 335–342. 9827902

56. Itohara S, Mombaerts P, Lafaille J, Iacomini J, Nelson A, et al. (1993) T cell receptor delta gene mutant mice: independent generation of alpha beta T cells and programmed rearrangements of gamma delta TCR genes. Cell 72: 337–348. 8381716

57. Sauer KA, Scholtes P, Karwot R, Finotto S (2006) Isolation of CD4+ T cells from murine lungs: a method to analyze ongoing immune responses in the lung. Nat Protoc 1: 2870–2875. 17406546

58. Capone M, Lees RK, Finke D, Ernst B, Meerwijk JP, et al. (2003) Selective absence of CD8+ TCRalpha beta+ intestinal epithelial cells in transgenic mice expressing beta2-microglobulin-associated ligands exclusively on thymic cortical epithelium. Eur J Immunol 33: 1471–1477. 12778464

59. Robert-Richard E, Ged C, Ortet J, Santarelli X, Lamrissi-Garcia I, et al. (2006) Human cell engraftment after busulfan or irradiation conditioning of NOD/SCID mice. Haematologica 91: 1384. 17018389

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#