#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Role of Coupled Positive Feedback in the Expression of the SPI1 Type Three Secretion System in


Salmonella enterica serovar Typhimurium is a common food-borne pathogen that induces inflammatory diarrhea and invades intestinal epithelial cells using a type three secretion system (T3SS) encoded within Salmonella pathogenicity island 1 (SPI1). The genes encoding the SPI1 T3SS are tightly regulated by a network of interacting transcriptional regulators involving three coupled positive feedback loops. While the core architecture of the SPI1 gene circuit has been determined, the relative roles of these interacting regulators and associated feedback loops are still unknown. To determine the function of this circuit, we measured gene expression dynamics at both population and single-cell resolution in a number of SPI1 regulatory mutants. Using these data, we constructed a mathematical model of the SPI1 gene circuit. Analysis of the model predicted that the circuit serves two functions. The first is to place a threshold on SPI1 activation, ensuring that the genes encoding the T3SS are expressed only in response to the appropriate combination of environmental and cellular cues. The second is to amplify SPI1 gene expression. To experimentally test these predictions, we rewired the SPI1 genetic circuit by changing its regulatory architecture. This enabled us to directly test our predictions regarding the function of the circuit by varying the strength and dynamics of the activating signal. Collectively, our experimental and computational results enable us to deconstruct this complex circuit and determine the role of its individual components in regulating SPI1 gene expression dynamics.


Vyšlo v časopise: The Role of Coupled Positive Feedback in the Expression of the SPI1 Type Three Secretion System in. PLoS Pathog 6(7): e32767. doi:10.1371/journal.ppat.1001025
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001025

Souhrn

Salmonella enterica serovar Typhimurium is a common food-borne pathogen that induces inflammatory diarrhea and invades intestinal epithelial cells using a type three secretion system (T3SS) encoded within Salmonella pathogenicity island 1 (SPI1). The genes encoding the SPI1 T3SS are tightly regulated by a network of interacting transcriptional regulators involving three coupled positive feedback loops. While the core architecture of the SPI1 gene circuit has been determined, the relative roles of these interacting regulators and associated feedback loops are still unknown. To determine the function of this circuit, we measured gene expression dynamics at both population and single-cell resolution in a number of SPI1 regulatory mutants. Using these data, we constructed a mathematical model of the SPI1 gene circuit. Analysis of the model predicted that the circuit serves two functions. The first is to place a threshold on SPI1 activation, ensuring that the genes encoding the T3SS are expressed only in response to the appropriate combination of environmental and cellular cues. The second is to amplify SPI1 gene expression. To experimentally test these predictions, we rewired the SPI1 genetic circuit by changing its regulatory architecture. This enabled us to directly test our predictions regarding the function of the circuit by varying the strength and dynamics of the activating signal. Collectively, our experimental and computational results enable us to deconstruct this complex circuit and determine the role of its individual components in regulating SPI1 gene expression dynamics.


Zdroje

1. EllermeierCD

SlauchJM

2006 The genus Salmonella.

DworkinM

FalkowS

RosenbergE

SchleiferK-H

StackebrandtE

The prokaryotes, 3rd ed New York, NY. Springer 123 158

2. MillerSI

PeguesPA

2000 Salmonella species, including Salmonella typhi.

BennettJE

DolinR

Principles of infectious diseases Philadelphia PA Churchill Livingstone 2344 2363

3. MillsDM

BajajV

LeeCA

1995 A 40 kb chromosomal fragment encoding Salmonella typhimurium invasion genes is absent from the corresponding region of the Escherichia coli K-12 chromosome. Mol Microbiol 15 749 759

4. LeeCA

JonesBD

FalkowS

1992 Identification of a Salmonella typhimurium invasion locus by selection for hyperinvasive mutants. Proc Natl Acad Sci U S A 89 1847 1851

5. KimbroughTG

MillerSI

2000 Contribution of Salmonella typhimurium type III secretion components to needle complex formation. Proc Natl Acad Sci U S A 97 11008 11013

6. KuboriT

MatsushimaY

NakamuraD

UralilJ

Lara-TejeroM

1998 Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280 602 605

7. KimbroughTG

MillerSI

2002 Assembly of the type III secretion needle complex of Salmonella typhimurium. Microbes Infect 4 75 82

8. SukhanA

KuboriT

WilsonJ

GalanJE

2001 Genetic analysis of assembly of the Salmonella enterica serovar Typhimurium type III secretion-associated needle complex. J Bacteriol 183 1159 1167

9. CollazoCM

GalanJE

1997 The invasion-associated type III system of Salmonella typhimurium directs the translocation of Sip proteins into the host cell. Mol Microbiol 24 747 756

10. CollazoCM

GalanJE

1996 Requirement for exported proteins in secretion through the invasion-associated type III system of Salmonella typhimurium. Infect Immun 64 3524 3531

11. CornelisGR

2006 The type III secretion injectisome. Nat Rev Microbiol 4 811 825

12. GinocchioCC

OlmstedSB

WellsCL

GalanJE

1994 Contact with epithelial cells induces the formation of surface appendages on Salmonella typhimurium. Cell 76 717 724

13. FrancisCL

RyanTA

JonesBD

SmithSJ

FalkowS

1993 Ruffles induced by Salmonella and other stimuli direct macropinocytosis of bacteria. Nature 364 639 642

14. HaywardRD

KoronakisV

2002 Direct modulation of the host cell cytoskeleton by Salmonella actin-binding proteins. Trends Cell Biol 12 15 20

15. ZhouD

GalanJ

2001 Salmonella entry into host cells: the work in concert of type III secreted effector proteins. Microbes Infect 3 1293 1298

16. EllermeierCD

EllermeierJR

SlauchJM

2005 HilD, HilC and RtsA constitute a feed forward loop that controls expression of the SPI1 type three secretion system regulator hilA in Salmonella enterica serovar Typhimurium. Mol Microbiol 57 691 705

17. AltierC

2005 Genetic and environmental control of salmonella invasion. J Microbiol 43 Spec No 85 92

18. EllermeierJR

SlauchJM

2008 Fur regulates expression of the Salmonella pathogenicity island 1 type III secretion system through HilD. J Bacteriol 190 476 486

19. LinD

RaoCV

SlauchJM

2008 The Salmonella SPI1 type three secretion system responds to periplasmic disulfide bond status via the flagellar apparatus and the RcsCDB system. J Bacteriol 190 87 97

20. LucasRL

LostrohCP

DiRussoCC

SpectorMP

WannerBL

2000 Multiple factors independently regulate hilA and invasion gene expression in Salmonella enterica serovar typhimurium. J Bacteriol 182 1872 1882

21. IyodaS

KamidoiT

HiroseK

KutsukakeK

WatanabeH

2001 A flagellar gene fliZ regulates the expression of invasion genes and virulence phenotype in Salmonella enterica serovar Typhimurium. Microb Pathog 30 81 90

22. EllermeierCD

SlauchJM

2003 RtsA and RtsB coordinately regulate expression of the invasion and flagellar genes in Salmonella enterica serovar Typhimurium. J Bacteriol 185 5096 5108

23. BaxterMA

JonesBD

2005 The fimYZ genes regulate Salmonella enterica Serovar Typhimurium invasion in addition to type 1 fimbrial expression and bacterial motility. Infect Immun 73 1377 1385

24. SainiS

PearlJA

RaoCV

2009 Role of FimW, FimY, and FimZ in regulating the expression of type i fimbriae in Salmonella enterica serovar Typhimurium. J Bacteriol 191 3003 3010

25. DalyRA

LostrohCP

2008 Genetic analysis of the Salmonella transcription factor HilA. Can J Microbiol 54 854 860

26. AhmerBM

van ReeuwijkJ

WatsonPR

WallisTS

HeffronF

1999 Salmonella SirA is a global regulator of genes mediating enteropathogenesis. Mol Microbiol 31 971 982

27. BajajV

HwangC

LeeCA

1995 hilA is a novel ompR/toxR family member that activates the expression of Salmonella typhimurium invasion genes. Mol Microbiol 18 715 727

28. BajajV

LucasRL

HwangC

LeeCA

1996 Co-ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression. Mol Microbiol 22 703 714

29. DarwinKH

MillerVL

2000 The putative invasion protein chaperone SicA acts together with InvF to activate the expression of Salmonella typhimurium virulence genes. Mol Microbiol 35 949 960

30. DarwinKH

MillerVL

2001 Type III secretion chaperone-dependent regulation: activation of virulence genes by SicA and InvF in Salmonella typhimurium. Embo J 20 1850 1862

31. SchechterLM

LeeCA

2001 AraC/XylS family members, HilC and HilD, directly bind and derepress the Salmonella typhimurium hilA promoter. Mol Microbiol 40 1289 1299

32. OlekhnovichIN

KadnerRJ

2002 DNA-binding activities of the HilC and HilD virulence regulatory proteins of Salmonella enterica serovar Typhimurium. J Bacteriol 184 4148 4160

33. SchechterLM

DamrauerSM

LeeCA

1999 Two AraC/XylS family members can independently counteract the effect of repressing sequences upstream of the hilA promoter. Mol Microbiol 32 629 642

34. BaxterMA

FahlenTF

WilsonRL

JonesBD

2003 HilE interacts with HilD and negatively regulates hilA transcription and expression of the Salmonella enterica serovar Typhimurium invasive phenotype. Infect Immun 71 1295 1305

35. LimS

YunJ

YoonH

ParkC

KimB

2007 Mlc regulation of Salmonella pathogenicity island I gene expression via hilE repression. Nucleic Acids Res 35 1822 1832

36. WinsonMK

SwiftS

HillPJ

SimsCM

GriesmayrG

1998 Engineering the luxCDABE genes from Photorhabdus luminescens to provide a bioluminescent reporter for constitutive and promoter probe plasmids and mini-Tn5 constructs. FEMS Microbiol Lett 163 193 202

37. SainiS

BrownJD

AldridgePD

RaoCV

2008 FliZ Is a posttranslational activator of FlhD4C2-dependent flagellar gene expression. J Bacteriol 190 4979 4988

38. MillerWG

LindowSE

1997 An improved GFP cloning cassette designed for prokaryotic transcriptional fusions. Gene 191 149 153

39. HakkilaK

MaksimowM

KarpM

VirtaM

2002 Reporter genes lucFF, luxCDABE, gfp, and dsred have different characteristics in whole-cell bacterial sensors. Anal Biochem 301 235 242

40. MeighenEA

1991 Molecular biology of bacterial bioluminescence. Microbiol Rev 55 123 142

41. TemmeK

SalisH

Tullman-ErcekD

LevskayaA

HongSH

2008 Induction and relaxation dynamics of the regulatory network controlling the type III secretion system encoded within Salmonella pathogenicity island 1. J Mol Biol 377 47 61

42. HautefortI

ProencaMJ

HintonJC

2003 Single-copy green fluorescent protein gene fusions allow accurate measurement of Salmonella gene expression in vitro and during infection of mammalian cells. Appl Environ Microbiol 69 7480 7491

43. MitrophanovAY

GroismanEA

2008 Positive feedback in cellular control systems. Bioessays 30 542 555

44. EllermeierJR

SlauchJM

2007 Adaptation to the host environment: regulation of the SPI1 type III secretion system in Salmonella enterica serovar Typhimurium. Curr Opin Microbiol 10 24 29

45. CarterPB

CollinsFM

1974 The route of enteric infection in normal mice. J Exp Med 139 1189 1203

46. BecskeiA

SeraphinB

SerranoL

2001 Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. Embo J 20 2528 2535

47. MaedaYT

SanoM

2006 Regulatory dynamics of synthetic gene networks with positive feedback. J Mol Biol 359 1107 1124

48. DubnauD

LosickR

2006 Bistability in bacteria. Mol Microbiol 61 564 572

49. BrandmanO

FerrellJEJr

LiR

MeyerT

2005 Interlinked fast and slow positive feedback loops drive reliable cell decisions. Science 310 496 498

50. CuiJ

ChenC

LuH

SunT

ShenP

2008 Two independent positive feedbacks and bistability in the Bcl-2 apoptotic switch. PLoS One 3 e1469

51. ThomasR

ThieffryD

KaufmanM

1995 Dynamical behaviour of biological regulatory networks–I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bull Math Biol 57 247 276

52. TianXJ

ZhangXP

LiuF

WangW

2009 Interlinking positive and negative feedback loops creates a tunable motif in gene regulatory networks. Phys Rev E Stat Nonlin Soft Matter Phys 80 011926

53. ChangDE

LeungS

AtkinsonMR

ReiflerA

ForgerD

2009 Building biological memory by linking positive feedback loops. Proc Natl Acad Sci U S A

54. WuK

RaoCV

2010 The role of configuration and coupling in autoregulatory gene circuits. Mol Microbiol 75 513 527

55. MitrophanovAY

JewettMW

HadleyTJ

GroismanEA

2008 Evolution and dynamics of regulatory architectures controlling polymyxin B resistance in enteric bacteria. PLoS Genet 4 e1000233

56. KatoA

MitrophanovAY

GroismanEA

2007 A connector of two-component regulatory systems promotes signal amplification and persistence of expression. Proc Natl Acad Sci U S A 104 12063 12068

57. DatsenkoKA

WannerBL

2000 One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97 6640 6645

58. DavisR

BosteinD

RothJR

1980 Advanced bacterial genetics: a manual for genetic engineering NY Cold Spring Harbor Laboratory Press

59. KarlinseyJE

2007 lambda-Red genetic engineering in Salmonella enterica serovar Typhimurium. Methods Enzymol 421 199 209

60. FahlenTF

MathurN

JonesBD

2000 Identification and characterization of mutants with increased expression of hilA, the invasion gene transcriptional activator of Salmonella typhimurium. FEMS Immunol Med Microbiol 28 25 35

61. AndersenJB

SternbergC

PoulsenLK

BjornSP

GivskovM

1998 New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol 64 2240 2246

62. KalirS

McClureJ

PabbarajuK

SouthwardC

RonenM

2001 Ordering genes in a flagella pathway by analysis of expression kinetics from living bacteria. Science 292 2080 2083

63. DarwinKH

MillerVL

1999 InvF is required for expression of genes encoding proteins secreted by the SPI1 type III secretion apparatus in Salmonella typhimurium. J Bacteriol 181 4949 4954

64. De KeersmaeckerSC

MarchalK

VerhoevenTL

EngelenK

VanderleydenJ

2005 Microarray analysis and motif detection reveal new targets of the Salmonella enterica serovar Typhimurium HilA regulatory protein, including hilA itself. J Bacteriol 187 4381 4391

65. SainiS

RaoCV

2010 SprB is the molecular link between Salmonella pathogenicity island 1 (SPI1) and SPI4. J Bacteriol 192 2459 2462

66. MaithreyeR

MandeSS

2007 Modelling of the regulation of the hilA promoter of type three secretion system of Salmonella enterica serovar Typhimurium. Syst Synth Biol 1 129 137

67. GaneshAB

RajasinghH

MandeSS

2009 Mathematical modeling of regulation of type III secretion system in Salmonella enterica serovar Typhimurium by SirA. In Silico Biol 9 S57 72

68. CherepanovPP

WackernagelW

1995 Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158 9 14

69. McClellandM

SandersonKE

SpiethJ

CliftonSW

LatreilleP

2001 Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413 852 856

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#