#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Plus- and Minus-End Directed Microtubule Motors Bind Simultaneously to Herpes Simplex Virus Capsids Using Different Inner Tegument Structures


Many viruses depend on host microtubule motors to reach their destined intracellular location. Viral particles of neurotropic alphaherpesviruses such as herpes simplex virus 1 (HSV1) show bidirectional transport towards the cell center as well as the periphery, indicating that they utilize microtubule motors of opposing directionality. To understand the mechanisms of specific motor recruitment, it is necessary to characterize the molecular composition of such motile viral structures. We have generated HSV1 capsids with different surface features without impairing their overall architecture, and show that in a mammalian cell-free system the microtubule motors dynein and kinesin-1 and the dynein cofactor dynactin could interact directly with capsids independent of other host factors. The capsid composition and surface was analyzed with respect to 23 structural proteins that are potentially exposed to the cytosol during virus assembly or cell entry. Many of these proteins belong to the tegument, the hallmark of all herpesviruses located between the capsid and the viral envelope. Using immunoblots, quantitative mass spectrometry and quantitative immunoelectron microscopy, we show that capsids exposing inner tegument proteins such as pUS3, pUL36, pUL37, ICP0, pUL14, pUL16, and pUL21 recruited dynein, dynactin, kinesin-1 and kinesin-2. In contrast, neither untegumented capsids exposing VP5, VP26, pUL17 and pUL25 nor capsids covered by outer tegument proteins such as vhs, pUL11, ICP4, ICP34.5, VP11/12, VP13/14, VP16, VP22 or pUS11 bound microtubule motors. Our data suggest that HSV1 uses different structural features of the inner tegument to recruit dynein or kinesin-1. Individual capsids simultaneously accommodated motors of opposing directionality as well as several copies of the same motor. Thus, these associated motors either engage in a tug-of-war or their activities are coordinately regulated to achieve net transport either to the nucleus during cell entry or to cytoplasmic membranes for envelopment during assembly.


Vyšlo v časopise: Plus- and Minus-End Directed Microtubule Motors Bind Simultaneously to Herpes Simplex Virus Capsids Using Different Inner Tegument Structures. PLoS Pathog 6(7): e32767. doi:10.1371/journal.ppat.1000991
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1000991

Souhrn

Many viruses depend on host microtubule motors to reach their destined intracellular location. Viral particles of neurotropic alphaherpesviruses such as herpes simplex virus 1 (HSV1) show bidirectional transport towards the cell center as well as the periphery, indicating that they utilize microtubule motors of opposing directionality. To understand the mechanisms of specific motor recruitment, it is necessary to characterize the molecular composition of such motile viral structures. We have generated HSV1 capsids with different surface features without impairing their overall architecture, and show that in a mammalian cell-free system the microtubule motors dynein and kinesin-1 and the dynein cofactor dynactin could interact directly with capsids independent of other host factors. The capsid composition and surface was analyzed with respect to 23 structural proteins that are potentially exposed to the cytosol during virus assembly or cell entry. Many of these proteins belong to the tegument, the hallmark of all herpesviruses located between the capsid and the viral envelope. Using immunoblots, quantitative mass spectrometry and quantitative immunoelectron microscopy, we show that capsids exposing inner tegument proteins such as pUS3, pUL36, pUL37, ICP0, pUL14, pUL16, and pUL21 recruited dynein, dynactin, kinesin-1 and kinesin-2. In contrast, neither untegumented capsids exposing VP5, VP26, pUL17 and pUL25 nor capsids covered by outer tegument proteins such as vhs, pUL11, ICP4, ICP34.5, VP11/12, VP13/14, VP16, VP22 or pUS11 bound microtubule motors. Our data suggest that HSV1 uses different structural features of the inner tegument to recruit dynein or kinesin-1. Individual capsids simultaneously accommodated motors of opposing directionality as well as several copies of the same motor. Thus, these associated motors either engage in a tug-of-war or their activities are coordinately regulated to achieve net transport either to the nucleus during cell entry or to cytoplasmic membranes for envelopment during assembly.


Zdroje

1. SodeikB

2000 Mechanisms of viral transport in the cytoplasm. Trends Microbiol 8 465 472

2. SmithGA

EnquistLW

2002 BREAK INS AND BREAK OUTS: Viral Interactions with the Cytoskeleton of Mammalian Cells. Annu Rev Cell Dev Biol 18 135 161

3. GreberUF

WayM

2006 A Superhighway to Virus Infection. Cell 124 741 756

4. RadtkeK

DöhnerK

SodeikB

2006 Viral interactions with the cytoskeleton: A hitchhiker's guide to the cell. Cellular Microbiology 8 387 400

5. BrandenburgB

ZhuangX

2007 Virus trafficking - learning from single-virus tracking. Nat Rev Microbiol 5 197 208

6. WelteMA

2004 Bidirectional transport along microtubules. Curr Biol 14 R525 537

7. GrossSP

VershininM

ShubeitaGT

2007 Cargo transport: two motors are sometimes better than one. Curr Biol 17 R478 486

8. DöhnerK

NagelCH

SodeikB

2005 Viral stop-and-go along microtubules: taking a ride with dynein and kinesins. Trends Microbiol 13 320 327

9. HirokawaN

NodaY

2008 Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. Physiol Rev 88 1089 1118

10. MuresanV

GodekCP

ReeseTS

SchnappBJ

1996 Plus-end motors override minus-end motors during transport of squid axon vesicles on microtubules. J Cell Biol 135 383 397

11. MullerMJ

KlumppS

LipowskyR

2008 Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors. Prot Natl Acad Sci U S A 105 4609 4614

12. SoppinaV

RaiAK

RamaiyaAJ

BarakP

MallikR

2009 Tug-of-war between dissimilar teams of microtubule motors regulates transport and fission of endosomes. Prot Natl Acad Sci U S A 106 19381 19386

13. EbnethA

GodemannR

StamerK

IllenbergerS

TrinczekB

1998 Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer's disease. J Cell Biol 143 777 794

14. VershininM

CarterBC

RazafskyDS

KingSJ

GrossSP

2007 Multiple-motor based transport and its regulation by Tau. Prot Natl Acad Sci U S A 104 87 92

15. DixitR

RossJL

GoldmanYE

HolzbaurELF

2008 Differential Regulation of Dynein and Kinesin Motor Proteins by Tau. Science 319 1086 1089

16. SchroerTA

2004 Dynactin. Annu Rev Cell Dev Biol 20 759 779

17. PfisterKK

ShahPR

HummerichH

RussA

CottonJ

2006 Genetic analysis of the cytoplasmic dynein subunit families. PLOS Genet 2 e1

18. KardonJR

ValeRD

2009 Regulators of the cytoplasmic dynein motor. Nat Rev Mol Cell Biol 10 854 865

19. HallJ

KarplusPA

BarbarE

2009 Multivalency in the assembly of intrinsically disordered dynein intermediate chain. J Biol Chem 284 33115 33121

20. MaxwellKL

FrappierL

2007 Viral proteomics. Microbiol Mol Biol Rev 71 398 411

21. LiuAP

FletcherDA

2009 Biology under construction: in vitro reconstitution of cellular function. Nat Rev Mol Cell Biol 10 644 650

22. OjalaPM

SodeikB

EbersoldMW

KutayU

HeleniusA

2000 Herpes simplex virus type 1 entry into host cells: reconstitution of capsid binding and uncoating at the nuclear pore complex in vitro. Mol Cell Biol 20 4922 4931

23. WolfsteinA

NagelCH

RadtkeK

DöhnerK

AllanVJ

2006 The inner tegument promotes herpes simplex virus capsid motility along microtubules in vitro. Traffic 7 227 237

24. RoizmanB

KnipeDM

WhitleyRJ

2007 Herpes simplex virus.

FieldsBN

HowleyPM

Fundamental Virology, 5th edition Philadelphia Lippincott Williams & Wilkins 2502 2601

25. DiefenbachRJ

Miranda-SaksenaM

DouglasMW

CunninghamAL

2008 Transport and egress of herpes simplex virus in neurons. Rev Med Virol 18 35 51

26. MaurerUE

SodeikB

GrunewaldK

2008 Native 3D intermediates of membrane fusion in herpes simplex virus 1 entry. Prot Natl Acad Sci U S A 105 10559 10564

27. DöhnerK

SodeikB

2004 The role of the cytoskeleton during viral infection. Curr Top Microbiol Immunol 285 67 108

28. ShandaSK

WilsonDW

2008 UL36p Is Required for Efficient Transport of Membrane-Associated Herpes Simplex Virus Type 1 along Microtubules. J Virol 82 7388 7394

29. LymanMG

EnquistLW

2009 Herpesvirus interactions with the host cytoskeleton. J Virol 83 2058 2066

30. KellyBJ

FraefelC

CunninghamAL

DiefenbachRJ

2009 Functional roles of the tegument proteins of herpes simplex virus type 1. Virus Res 145 173 186

31. WillardM

2002 Rapid Directional Translocations in Virus Replication. J Virol 76 5220 5232

32. SmithGA

PomeranzL

GrossSP

EnquistLW

2004 Local modulation of plus-end transport targets herpesvirus entry and egress in sensory axons. Prot Natl Acad Sci U S A 101 16034 16039

33. SodeikB

EbersoldMW

HeleniusA

1997 Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J Cell Biol 136 1007 1021

34. DöhnerK

WolfsteinA

PrankU

EcheverriC

DujardinD

2002 Function of Dynein and Dynactin in Herpes Simplex Virus Capsid Transport. Mol Biol Cell 13 2795 2809

35. MabitH

NakanoMY

PrankU

SaamB

DöhnerK

2002 Intact microtubules support adenovirus and herpes simplex virus infections. J Virol 76 9962 9971

36. MarozinS

PrankU

SodeikB

2004 Herpes simplex virus type 1 infection of polarized epithelial cells requires microtubules and access to receptors present at cell-cell contact sites. J Gen Virol 85 775 786

37. MettenleiterTC

KluppBG

GranzowH

2009 Herpesvirus assembly: an update. Virus Research 143 222 234

38. NagelCH

DöhnerK

FathollahyM

StriveT

BorstEM

2008 Nuclear egress and envelopment of Herpes Simplex Virus capsids analyzed with dual-color fluorescence HSV1(17+). J Virol 82 3109 3124

39. TurcotteS

LetellierJ

LippeR

2005 Herpes Simplex Virus Type 1 Capsids Transit by the trans-Golgi Network, Where Viral Glycoproteins Accumulate Independently of Capsid Egress. J Virol 79 8847 8860

40. Miranda-SaksenaM

BoadleRA

AggarwalA

TijonoB

RixonFJ

2009 Herpes Simplex Virus Utilizes The Large Secretory Vesicle Pathway For Anterograde Transport Of Tegument and Envelope proteins and For Viral Exocytosis From Growth Cones Of Human Fetal Axons. J Virol 83 3187 3199

41. SzilagyiJF

CunninghamC

1991 Identification and characterization of a novel non-infectious herpes simplex virus-related particle. J Gen Virol 72 661 668

42. DöhnerK

RadtkeK

SchmidtS

SodeikB

2006 Eclipse Phase of Herpes Simplex Virus Type 1 Infection: Efficient Dynein-Mediated Capsid Transport without the Small Capsid Protein VP26. J Virol 80 8211 8224

43. RobertsAP

AbaituaF

O'HareP

McNabD

RixonFJ

2009 Differing roles of inner tegument proteins pUL36 and pUL37 during entry of herpes simplex virus type1. J Virol 83 105 116

44. SimonsM

RaposoG

2009 Exosomes - vesicular carriers for intercellular communication. Curr Opin Cell Biol 21 575 581

45. TrusBL

NewcombWW

ChengN

CardoneG

MarekovL

2007 Allosteric signaling and a nuclear exit strategy: binding of UL25/UL17 heterodimers to DNA-Filled HSV-1 capsids. Mol Cell 26 479 489

46. RoosWH

RadtkeK

KniesmeijerE

GeertsemaH

SodeikB

2009 Scaffold expulsion and genome packaging trigger stabilization of herpes simplex virus capsids. Prot Natl Acad Sci U S A 106 9673 9678

47. SlotJW

PosthumaG

ChangLY

CrapoJD

GeuzeHJ

1989 Quantitative aspects of immunogold-labeling in embedded and non-embedded sections. Am J Anat 185 195 207

48. DouglasMW

DiefenbachRJ

HomaFL

Miranda-SaksenaM

RixonFJ

2004 Herpes simplex virus type 1 capsid protein VP26 interacts with dynein light chains RP3 and Tctex1 and plays a role in retrograde cellular transport. J Biol Chem 279 28522 28530

49. DiefenbachRJ

Miranda-SaksenaM

DiefenbachE

HollandDJ

BoadleRA

2002 Herpes Simplex Virus Tegument Protein US11 Interacts with Conventional Kinesin Heavy Chain. J Virol 76 3282 3291

50. BenboudjemaL

MulveyM

GaoY

PimplikarSW

MohrI

2003 Association of the herpes simplex virus type 1 Us11 gene product with the cellular kinesin light-chain-related protein PAT1 results in the redistribution of both polypeptides. J Virol 77 9192 9203

51. OngSE

BlagoevB

KratchmarovaI

KristensenDB

SteenH

2002 Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1 376 386

52. MichaelK

KluppBG

MettenleiterTC

KargerA

2006 Composition of pseudorabies virus particles lacking tegument protein US3, UL47, or UL49 or envelope glycoprotein E. J Virol 80 1332 1339

53. ThurlowJK

RixonFJ

MurphyM

Targett-AdamsP

HughesM

2005 The herpes simplex virus type 1 DNA packaging protein UL17 is a virion protein that is present in both the capsid and the tegument compartments. J Virol 79 150 158

54. NewcombWW

HomaFL

BrownJC

2006 Herpes Simplex Virus Capsid Structure: DNA Packaging Protein UL25 Is Located on the External Surface of the Capsid near the Vertices. J Virol 80 6286 6294

55. MichaelK

BöttcherS

KluppBG

KargerA

MettenleiterTC

2006 Pseudorabies virus particles lacking tegument proteins pUL11 or pUL16 incorporate less full-length pUL36 than wild-type virus, but specifically accumulate a pUL36 N-terminal fragment. J Gen Virol 87 3503 3507

56. NewcombWW

JuhasRM

ThomsenDR

HomaFL

BurchAD

2001 The UL6 gene product forms the portal for entry of DNA into the herpes simplex virus capsid. J Virol 75 10923 10932

57. McNabbDS

CourtneyRJ

1992 Analysis of the UL36 open reading frame encoding the large tegument protein (ICP1/2) of herpes simplex virus type 1. J Virol 66 7581 7584

58. HaghniaM

CavalliV

ShahSB

SchimmelpfengK

BruschR

2007 Dynactin Is Required for Coordinated Bidirectional Motility, but Not for Dynein Membrane Attachment. Mol Biol Cell 18 2081 2089

59. DeaconSW

SerpinskayaAS

VaughanPS

FanarragaML

VernosI

2003 Dynactin is required for bidirectional organelle transport. J Cell Biol 160 297 301

60. BerezukMA

SchroerTA

2007 Dynactin enhances the processivity of kinesin-2. Traffic 8 124 129

61. SathishN

ZhuFX

YuanY

2009 Kaposi's sarcoma-associated herpesvirus ORF45 interacts with kinesin-2 transporting viral capsid-tegument complexes along microtubules. PLoS Pathog 5 e1000332

62. GindhartJG

2006 Towards an understanding of kinesin-1 dependent transport pathways through the study of protein-protein interactions. Brief Funct Genomic Proteomic 5 74 86

63. McGuireJR

RongJ

LiS-H

LiX-J

2006 Interaction of Huntingtin-associated Protein-1 with Kinesin Light Chain: IMPLICATIONS IN INTRACELLULAR TRAFFICKING IN NEURONS. J Biol Chem 281 3552 3559

64. LoretS

GuayG

LippéR

2008 Comprehensive characterization of extracellular herpes simplex virus type 1 virions. J Virol 82 8605 8618

65. RossJL

AliMY

WarshawDM

2008 Cargo transport: molecular motors navigate a complex cytoskeleton. Curr Opin Cell Biol 20 41 47

66. RossJL

ShumanH

HolzbaurEL

GoldmanYE

2008 Kinesin and dynein-dynactin at intersecting microtubules: motor density affects dynein function. Biophys J 94 3115 3125

67. GriffithsG

1993 Quantitative Aspects of Immunocytochemistry. Fine Structure Immunocytochemistry Berlin Heidelberg Springer-Verlag 371 445

68. DesaiP

DeLucaNA

PersonS

1998 Herpes simplex virus type 1 VP26 is not essential for replication in cell culture but influences production of infectious virus in the nervous system of infected mice. Virology 247 115 124

69. AntinoneSE

ShubeitaGT

CollerKE

LeeJI

Haverlock-MoynsS

2006 The Herpesvirus capsid surface protein, VP26, and the majority of the tegument proteins are dispensable for capsid transport toward the nucleus. J Virol 80 5494 5498

70. MorrisonEE

WangYF

MeredithDM

1998 Phosphorylation of structural components promotes dissociation of the herpes simplex virus type 1 tegument. J Virol 72 7108 7114

71. GranzowH

KluppBG

MettenleiterTC

2005 Entry of Pseudorabies Virus: an Immunogold-Labeling Study. J Virol 79 3200 3205

72. LuxtonGW

HaverlockS

CollerKE

AntinoneSE

PinceticA

2005 Targeting of herpesvirus capsid transport in axons is coupled to association with specific sets of tegument proteins. Prot Natl Acad Sci U S A 102 5832 5837

73. MichaelK

KluppBG

KargerA

MettenleiterTC

2007 Efficient Incorporation of Tegument Proteins pUL46, pUL49, and pUS3 into Pseudorabies Virus Particles Depends on the Presence of pUL21. J Virol 81 1048 1051

74. CuranovicD

LymanMG

Bou-AbboudC

CardJP

EnquistLW

2009 Repair of the UL21 Locus in Pseudorabies Virus Bartha Enhances the Kinetics of Retrograde, Transneuronal Infection In Vitro and In Vivo. J Virol 83 1173 1183

75. CollerKE

I-Hsuan LeeJ

UedA

SmithGA

2007 The capsid and tegument of the alpha herpesviruses are linked by an interaction between the UL25 and VP1/2 proteins. J Virol 81 11790 11797

76. MijatovB

CunninghamAL

DiefenbachRJ

2007 Residues F593 and E596 of HSV-1 tegument protein pUL36 (VP1/2) mediate binding of tegument protein pUL37. Virology 368 26 31

77. LeeJH

VittoneV

DiefenbachE

CunninghamAL

DiefenbachRJ

2008 Identification of structural protein-protein interactions of herpes simplex virus type 1. Virology 378 347 354

78. DesaiP

2000 A null mutation in the UL36 gene of herpes simplex virus type 1 results in accumulation of unenveloped DNA-filled capsids in the cytoplasm of infected cells. J Virol 74 11608 11618

79. DesaiP

SextonGL

McCafferyJM

PersonS

2001 A null mutation in the gene encoding the herpes simplex virus type 1 UL37 polypeptide abrogates virus maturation. J Virol 75 10259 10271

80. LuxtonGWG

I-Hsuan LeeJ

Haverlock-MoynsS

SchoberJM

SmithGA

2006 The Pseudorabies Virus VP1/2 Tegument Protein Is Required for Intracellular Capsid Transport. J Virol 80 201 209

81. CopelandAM

NewcombWW

BrownJC

2009 Herpes simplex virus replication: roles of viral proteins and nucleoporins in capsid-nucleus attachment. J Virol 83 1660 1668

82. KrautwaldM

FuchsW

KluppBG

MettenleiterTC

2009 Translocation of incoming pseudorabies virus capsids to the cell nucleus is delayed in the absence of tegument protein pUL37. J Virol 83 3389 3396

83. LeegeT

GranzowH

FuchsW

KluppBG

MettenleiterTC

2009 Phenotypic similarities and differences between UL37-deleted pseudorabies virus and herpes simplex virus type 1. J Gen Virol 90 1560 1568

84. JovasevicV

LiangL

RoizmanB

2008 Proteolytic cleavage of VP1-2 is required for the release of herpes simplex virus 1 DNA into the nucleus. J Virol 82 3311 3319

85. GrossSP

2004 Hither and yon: a review of bi-directional microtubule-based transport. Phys Biol 1 R1 11

86. SmithGA

GrossSP

EnquistLW

2001 Herpesviruses use bidirectional fast-axonal transport to spread in sensory neurons. Prot Natl Acad Sci U S A 98 3466 3470

87. BrownSM

RitchieDA

Subak-SharpeJH

1973 Genetic studies with herpes simplex virus type 1. The isolation of temperature-sensitive mutants, their arrangement into complementation groups and recombination analysis leading to a linkage map. J Gen Virol 18 329 346

88. ZhangY

SirkoDA

McKnightJL

1991 Role of herpes simplex virus type 1 UL46 and UL47 in alpha TIF-mediated transcriptional induction: characterization of three viral deletion mutants. J Virol 65 829 841

89. BarkerDE

RoizmanB

1990 Identification of three genes nonessential for growth in cell culture near the right terminus of the unique sequences of long component of herpes simplex virus 1. Virology 177 684 691

90. Miranda-SaksenaM

WakisakaH

TijonoB

BoadleRA

RixonF

2006 Herpes simplex virus type 1 accumulation, envelopment, and exit in growth cones and varicosities in mid-distal regions of axons. J Virol 80 3592 3606

91. BucksMA

O'reganKJ

MurphyMA

WillsJW

CourtneyRJ

2007 Herpes simplex virus type 1 tegument proteins VP1/2 and UL37 are associated with intranuclear capsids. Virology 361 316 324

92. PaschalBM

ShpetnerHS

ValleeRB

1991 Purification of brain cytoplasmic dynein and characterization of its in vitro properties. Methods Enzymol 196 181 191

93. LaneJD

AllanVJ

1999 Microtubule-based endoplasmic reticulum motility in Xenopus laevis: activation of membrane-associated kinesin during development. Mol Biol Cell 10 1909 1922

94. BinghamJB

KingSJ

SchroerT

1998 Purification of dynactin and dynein from brain tissue. Methods in Enzymology 298 171 184

95. KuznetsovSA

GelfandVI

1986 Bovine brain kinesin is a microtibule-activated ATPase. Prot Natl Acad Sci U S A 83 8530 8534

96. Uniprot

2008 The Universal Protein Resource. UniProt Consortium. Nucleic Acids Research 36 D190 195

97. SkibaM

MettenleiterTC

KargerA

2008 Quantitative whole-cell proteome analysis of pseudorabies virus-infected cells. J Virol 82 9689 9699

98. RoizmanB

Campadelli-FiumeG

2007 Alphaherpes viral genes and their function.

ArvinA

Human Herpesviruses - Biology, Therapy and Immunoprophylaxis Cambridge University Press 70 92

99. SmithCC

AurelianL

1997 The large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10) is associated with the virion tegument and has PK activity. Virology 234 235 242

100. CohenGH

Ponce de LeonM

DiggelmannH

LawrenceWC

VernonSK

1980 Structural analysis of the capsid polypeptides of herpes simplex virus types 1 and 2. J Virol 34 521 531

101. DesaiP

DeLucaNA

PersonS

1998 Herpes simplex virus type 1 VP26 is not essential for replication in cell culture but influences production of infectious virus in the nervous system of infected mice. Virology 247 115 124

102. NewcombWW

ThomsenDR

HomaFL

BrownJC

2003 Assembly of the herpes simplex virus capsid: identification of soluble scaffold-portal complexes and their role in formation of portal-containing capsids. J Virol 77 9862 9871

103. TausNS

SalmonB

BainesJD

1998 The herpes simplex virus 1 UL17 gene is required for localization of capsids and major and minor capsid proteins to intranuclear sites where viral DNA is cleaved and packaged. Virology 252 115 125

104. NalwangaD

RempelS

RoizmanB

BainesJD

1996 The UL 16 gene product of herpes simplex virus 1 is a virion protein that colocalizes with intranuclear capsid proteins. Virology 226 236 242

105. ThurlowJK

RixonFJ

MurphyM

Targett-AdamsP

HughesM

2005 The herpes simplex virus type 1 DNA packaging protein UL17 is a virion protein that is present in both the capsid and the tegument compartments. J Virol 79 150 158

106. KoslowskiKM

ShaverPR

WangXY

TenneyDJ

PedersonNE

1997 The pseudorabies virus UL28 protein enters the nucleus after coexpression with the herpes simplex virus UL15 protein. J Virol 71 9118 9123

107. MungerJ

CheeAV

RoizmanB

2001 The U(S)3 protein kinase blocks apoptosis induced by the d120 mutant of herpes simplex virus 1 at a premitochondrial stage. J Virol 75 5491 5497

108. WolfsteinA

NagelCH

RadtkeK

DöhnerK

AllanVJ

2006 The inner tegument promotes herpes simplex virus capsid motility along microtubules in vitro. Traffic 7 227 237

109. McNabbDS

CourtneyRJ

1992 Analysis of the UL36 open reading frame encoding the large tegument protein (ICP1/2) of herpes simplex virus type 1. J Virol 66 7581 7584

110. SchmitzJB

AlbrightAG

KinchingtonPR

JenkinsFJ

1995 The UL37 protein of herpes simplex virus type 1 is associated with the tegument of purified virions. Virology 206 1055 1065

111. RollerRJ

RoizmanB

1992 The herpes simplex virus 1 RNA binding protein US11 is a virion component and associates with ribosomal 60S subunits. J Virol 66 3624 3632

112. BainesJD

JacobRJ

SimmermanL

RoizmanB

1995 The herpes simplex virus 1 UL11 proteins are associated with cytoplasmic and nuclear membranes and with nuclear bodies of infected cells. J Virol 69 825 833

113. CunninghamC

DavisonAJ

MacLeanAR

TausNS

BainesJD

2000 Herpes simplex virus type 1 gene UL14: phenotype of a null mutant and identification of the encoded protein. J Virol 74 33 41

114. ZelusBD

StewartRS

RossJ

1996 The virion host shutoff protein of herpes simplex virus type 1: messenger ribonucleolytic activity in vitro. J Virol 70 2411 2419

115. EverettRD

OrrA

ElliottM

1991 High level expression and purification of herpes simplex virus type 1 immediate early polypeptide Vmw110. Nucleic Acids Res 19 6155 6161

116. ShowalterSD

ZweigM

HamparB

1981 Monoclonal antibodies to herpes simplex virus type 1 proteins, including the immediate-early protein ICP 4. Infect Immun 34 684 692

117. ChengG

BrettME

HeB

2002 Signals that dictate nuclear, nucleolar, and cytoplasmic shuttling of the gamma(1)34.5 protein of herpes simplex virus type 1. J Virol 76 9434 9445

118. WeinheimerSP

BoydBA

DurhamSK

ResnickJL

O'BoyleDR2nd

1992 Deletion of the VP16 open reading frame of herpes simplex virus type 1. J Virol 66 258 269

119. WhittakerGR

RiggioMP

HalliburtonIW

KillingtonRA

AllenGP

1991 Antigenic and protein sequence homology between VP13/14, a herpes simplex virus type 1 tegument protein, and gp10, a glycoprotein of equine herpesvirus 1 and 4. J Virol 65 2320 2326

120. ElliottG

O'HareP

1997 Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88 223 233

121. TynanSH

PurohitA

DoxseySJ

ValleeRB

2000 Light intermediate chain 1 defines a functional subfraction of cytoplasmic dynein which binds to pericentrin. J Biol Chem 275 32763 32768

122. SchaferDA

JenningsPB

CooperJA

1996 Dynamics of capping protein and actin assembly in vitro: uncapping barbed ends by polyphosphoinositides. J Cell Biol 135 169 179

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#