#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Leprosy and the Adaptation of Human Toll-Like Receptor 1


Leprosy is an infectious disease caused by the obligate intracellular pathogen Mycobacterium leprae and remains endemic in many parts of the world. Despite several major studies on susceptibility to leprosy, few genomic loci have been replicated independently. We have conducted an association analysis of more than 1,500 individuals from different case-control and family studies, and observed consistent associations between genetic variants in both TLR1 and the HLA-DRB1/DQA1 regions with susceptibility to leprosy (TLR1 I602S, case-control P = 5.7×10−8, OR = 0.31, 95% CI = 0.20–0.48, and HLA-DQA1 rs1071630, case-control P = 4.9×10−14, OR = 0.43, 95% CI = 0.35–0.54). The effect sizes of these associations suggest that TLR1 and HLA-DRB1/DQA1 are major susceptibility genes in susceptibility to leprosy. Further population differentiation analysis shows that the TLR1 locus is extremely differentiated. The protective dysfunctional 602S allele is rare in Africa but expands to become the dominant allele among individuals of European descent. This supports the hypothesis that this locus may be under selection from mycobacteria or other pathogens that are recognized by TLR1 and its co-receptors. These observations provide insight into the long standing host-pathogen relationship between human and mycobacteria and highlight the key role of the TLR pathway in infectious diseases.


Vyšlo v časopise: Leprosy and the Adaptation of Human Toll-Like Receptor 1. PLoS Pathog 6(7): e32767. doi:10.1371/journal.ppat.1000979
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1000979

Souhrn

Leprosy is an infectious disease caused by the obligate intracellular pathogen Mycobacterium leprae and remains endemic in many parts of the world. Despite several major studies on susceptibility to leprosy, few genomic loci have been replicated independently. We have conducted an association analysis of more than 1,500 individuals from different case-control and family studies, and observed consistent associations between genetic variants in both TLR1 and the HLA-DRB1/DQA1 regions with susceptibility to leprosy (TLR1 I602S, case-control P = 5.7×10−8, OR = 0.31, 95% CI = 0.20–0.48, and HLA-DQA1 rs1071630, case-control P = 4.9×10−14, OR = 0.43, 95% CI = 0.35–0.54). The effect sizes of these associations suggest that TLR1 and HLA-DRB1/DQA1 are major susceptibility genes in susceptibility to leprosy. Further population differentiation analysis shows that the TLR1 locus is extremely differentiated. The protective dysfunctional 602S allele is rare in Africa but expands to become the dominant allele among individuals of European descent. This supports the hypothesis that this locus may be under selection from mycobacteria or other pathogens that are recognized by TLR1 and its co-receptors. These observations provide insight into the long standing host-pathogen relationship between human and mycobacteria and highlight the key role of the TLR pathway in infectious diseases.


Zdroje

1. ChakravarttiM

VogelF

1973 A twin study on leprosy. Stuttgart Georg Thieme 1 123

2. ShieldsED

RussellDA

Pericak-VanceMA

1987 Genetic epidemiology of the susceptibility to leprosy. J Clin Invest 79 1139 1143

3. AbelL

VuDL

ObertiJ

NguyenVT

VanVC

1995 Complex segregation analysis of leprosy in southern Vietnam. Genet Epidemiol 12 63 82

4. BakkerMI

MayL

HattaM

KwenangA

KlatserPR

2005 Genetic, household and spatial clustering of leprosy on an island in Indonesia: a population-based study. BMC Med Genet 6 40

5. KeatingBJ

TischfieldS

MurraySS

BhangaleT

PriceTS

2008 Concept, design and implementation of a cardiovascular gene-centric 50 k SNP array for large-scale genomic association studies. PLoS ONE 3 e3583

6. CardonLR

PalmerLJ

2003 Population stratification and spurious allelic association. Lancet 361 598 604

7. ZhangFR

HuangW

ChenSM

SunLD

LiuH

2009 Genomewide association study of leprosy. N Engl J Med 361 2609 2618

8. JohnsonCM

LyleEA

OmuetiKO

StepenskyVA

YeginO

2007 Cutting edge: A common polymorphism impairs cell surface trafficking and functional responses of TLR1 but protects against leprosy. J Immunol 178 7520 7524

9. AlcaisA

AlterA

AntoniG

OrlovaM

NguyenVT

2007 Stepwise replication identifies a low-producing lymphotoxin-alpha allele as a major risk factor for early-onset leprosy. Nat Genet 39 517 522

10. MalhotraD

DarvishiK

LohraM

KumarH

GroverC

2006 Association study of major risk single nucleotide polymorphisms in the common regulatory region of PARK2 and PACRG genes with leprosy in an Indian population. Eur J Hum Genet 14 438 442

11. WongSH

HillAV

VannbergFO

2010 Genomewide association study of leprosy. N Engl J Med 362 1446 1447; author reply 1447-1448

12. IoannidisJP

NtzaniEE

TrikalinosTA

2004 ‘Racial’ differences in genetic effects for complex diseases. Nat Genet 36 1312 1318

13. HaldaneJBS

1949 Disease and Evolution. La Ricerca Sci Suppl 19 68 76

14. ManolioTA

CollinsFS

CoxNJ

GoldsteinDB

HindorffLA

2009 Finding the missing heritability of complex diseases. Nature 461 747 753

15. HillAV

AllsoppCE

KwiatkowskiD

AnsteyNM

TwumasiP

1991 Common west African HLA antigens are associated with protection from severe malaria. Nature 352 595 600

16. PickrellJK

CoopG

NovembreJ

KudaravalliS

LiJZ

2009 Signals of recent positive selection in a worldwide sample of human populations. Genome Res 19 826 837

17. ToddJA

WalkerNM

CooperJD

SmythDJ

DownesK

2007 Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 39 857 864

18. The Wellcome Trust Case Control Consortium 2007 Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447 661 678

19. The Wellcome Trust Case Control Consortium 2005 A haplotype map of the human genome. Nature 437 1299 1320

20. WurfelMM

GordonAC

HoldenTD

RadellaF

StroutJ

2008 Toll-like receptor 1 polymorphisms affect innate immune responses and outcomes in sepsis. Am J Respir Crit Care Med 178 710 720

21. KrutzikSR

OchoaMT

SielingPA

UematsuS

NgYW

2003 Activation and regulation of Toll-like receptors 2 and 1 in human leprosy. Nat Med 9 525 532

22. GrossmanSR

ShylakhterI

KarlssonEK

ByrneEH

MoralesS

2010 A composite of multiple signals distinguishes causal variants in regions of positive selection. Science 327 883 886

23. HawnTR

MischEA

DunstanSJ

ThwaitesGE

LanNT

2007 A common human TLR1 polymorphism regulates the innate immune response to lipopeptides. Eur J Immunol 37 2280 2289

24. CirlC

WieserA

YadavM

DuerrS

SchubertS

2008 Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins. Nat Med 14 399 406

25. van EdenW

de VriesRR

MehraNK

VaidyaMC

D'AmaroJ

1980 HLA segregation of tuberculoid leprosy: confirmation of the DR2 marker. J Infect Dis 141 693 701

26. van EdenW

GonzalezNM

de VriesRR

ConvitJ

van RoodJJ

1985 HLA-linked control of predisposition to lepromatous leprosy. J Infect Dis 151 9 14

27. WongSH

HillAVS

VannbergFO

2010 Comment on: Genomewide association study of leprosy. N Engl J Med

28. ReichD

ThangarajK

PattersonN

PriceAL

SinghL

2009 Reconstructing Indian population history. Nature 461 489 494

29. MonotM

HonoreN

GarnierT

ZidaneN

SherafiD

2009 Comparative genomic and phylogeographic analysis of Mycobacterium leprae. Nat Genet 41 1282 1289

30. SaportaL

YukselA

1994 Androgenic status in patients with lepromatous leprosy. Br J Urol 74 221 224

31. SmithDG

GuintoRS

1978 Leprosy and fertility. Hum Biol 50 451 460

32. GuintoRS

DoullJA

De GuiaL

1954 Mortality of persons with leprosy prior to sulfone therapy, Cordova and Talisay, Cebu, Philippines. Int J Lepr 22 273 284

33. NoordeenSK

1972 Mortality in leprosy. Indian J Med Res 60 439 445

34. MonotM

HonoreN

GarnierT

AraozR

CoppeeJY

2005 On the origin of leprosy. Science 308 1040 1042

35. BoldsenJL

2005 Leprosy and mortality in the Medieval Danish village of Tirup. Am J Phys Anthropol 126 159 168

36. KhorCC

ChapmanSJ

VannbergFO

DunneA

MurphyC

2007 A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat Genet 39 523 528

37. MedzhitovR

JanewayCJr

2000 Innate immunity. N Engl J Med 343 338 344

38. MalhotraD

DarvishiK

SoodS

SharmaS

GroverC

2005 IL-10 promoter single nucleotide polymorphisms are significantly associated with resistance to leprosy. Hum Genet 118 295 300

39. SiddiquiMR

MeisnerS

ToshK

BalakrishnanK

GheiS

2001 A major susceptibility locus for leprosy in India maps to chromosome 10p13. Nat Genet 27 439 441

40. PurcellS

NealeB

Todd-BrownK

ThomasL

FerreiraMA

2007 PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81 559 575

41. BarrettJC

FryB

MallerJ

DalyMJ

2005 Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21 263 265

42. TeoYY

SmallKS

2010 A novel method for haplotype clustering and visualization. Genet Epidemiol 34 34 41

43. MaX

LiuY

GowenBB

GravissEA

ClarkAG

2007 Full-exon resequencing reveals toll-like receptor variants contribute to human susceptibility to tuberculosis disease. PLoS ONE 2 e1318

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#