#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Distinct Pathogenesis and Host Responses during Infection of by and


The genetically tractable model host Caenorhabditis elegans provides a valuable tool to dissect host-microbe interactions in vivo. Pseudomonas aeruginosa and Staphylococcus aureus utilize virulence factors involved in human disease to infect and kill C. elegans. Despite much progress, virtually nothing is known regarding the cytopathology of infection and the proximate causes of nematode death. Using light and electron microscopy, we found that P. aeruginosa infection entails intestinal distention, accumulation of an unidentified extracellular matrix and P. aeruginosa-synthesized outer membrane vesicles in the gut lumen and on the apical surface of intestinal cells, the appearance of abnormal autophagosomes inside intestinal cells, and P. aeruginosa intracellular invasion of C. elegans. Importantly, heat-killed P. aeruginosa fails to elicit a significant host response, suggesting that the C. elegans response to P. aeruginosa is activated either by heat-labile signals or pathogen-induced damage. In contrast, S. aureus infection causes enterocyte effacement, intestinal epithelium destruction, and complete degradation of internal organs. S. aureus activates a strong transcriptional response in C. elegans intestinal epithelial cells, which aids host survival during infection and shares elements with human innate responses. The C. elegans genes induced in response to S. aureus are mostly distinct from those induced by P. aeruginosa. In contrast to P. aeruginosa, heat-killed S. aureus activates a similar response as live S. aureus, which appears to be independent of the single C. elegans Toll-Like Receptor (TLR) protein. These data suggest that the host response to S. aureus is possibly mediated by pathogen-associated molecular patterns (PAMPs). Because our data suggest that neither the P. aeruginosa nor the S. aureus–triggered response requires canonical TLR signaling, they imply the existence of unidentified mechanisms for pathogen detection in C. elegans, with potentially conserved roles also in mammals.


Vyšlo v časopise: Distinct Pathogenesis and Host Responses during Infection of by and. PLoS Pathog 6(7): e32767. doi:10.1371/journal.ppat.1000982
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1000982

Souhrn

The genetically tractable model host Caenorhabditis elegans provides a valuable tool to dissect host-microbe interactions in vivo. Pseudomonas aeruginosa and Staphylococcus aureus utilize virulence factors involved in human disease to infect and kill C. elegans. Despite much progress, virtually nothing is known regarding the cytopathology of infection and the proximate causes of nematode death. Using light and electron microscopy, we found that P. aeruginosa infection entails intestinal distention, accumulation of an unidentified extracellular matrix and P. aeruginosa-synthesized outer membrane vesicles in the gut lumen and on the apical surface of intestinal cells, the appearance of abnormal autophagosomes inside intestinal cells, and P. aeruginosa intracellular invasion of C. elegans. Importantly, heat-killed P. aeruginosa fails to elicit a significant host response, suggesting that the C. elegans response to P. aeruginosa is activated either by heat-labile signals or pathogen-induced damage. In contrast, S. aureus infection causes enterocyte effacement, intestinal epithelium destruction, and complete degradation of internal organs. S. aureus activates a strong transcriptional response in C. elegans intestinal epithelial cells, which aids host survival during infection and shares elements with human innate responses. The C. elegans genes induced in response to S. aureus are mostly distinct from those induced by P. aeruginosa. In contrast to P. aeruginosa, heat-killed S. aureus activates a similar response as live S. aureus, which appears to be independent of the single C. elegans Toll-Like Receptor (TLR) protein. These data suggest that the host response to S. aureus is possibly mediated by pathogen-associated molecular patterns (PAMPs). Because our data suggest that neither the P. aeruginosa nor the S. aureus–triggered response requires canonical TLR signaling, they imply the existence of unidentified mechanisms for pathogen detection in C. elegans, with potentially conserved roles also in mammals.


Zdroje

1. Liévin-Le MoalV

ServinAL

2006 The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clin Microbiol Rev 19 315 337

2. VaishnavaS

BehrendtCL

IsmailAS

EckmannL

HooperLV

2008 Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci U S A 105 20858 20863

3. AkiraS

UematsuS

TakeuchiO

2006 Pathogen recognition and innate immunity. Cell 124 783 801

4. HoffmannJA

KafatosFC

JanewayCA

EzekowitzRA

1999 Phylogenetic perspectives in innate immunity. Science 284 1313 1318

5. LemaitreB

HoffmannJA

2007 The host defense of Drosophila melanogaster. Annu Rev Immunol 25 697 743

6. KurzCL

EwbankJJ

2003 Caenorhabditis elegans: an emerging genetic model for the study of innate immunity. Nat Rev Genet 4 380 390

7. IrazoquiJE

NgA

XavierRJ

AusubelFM

2008 Role for beta-catenin and HOX transcription factors in Caenorhabditis elegans and mammalian host epithelial-pathogen interactions. Proc Natl Acad Sci U S A 105 17469 17474

8. ZugastiO

EwbankJJ

2009 Neuroimmune regulation of antimicrobial peptide expression by a noncanonical TGF-beta signaling pathway in Caenorhabditis elegans epidermis. Nat Immunol 10 249 256

9. IrazoquiJE

UrbachJM

AusubelFM

2010 Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates. Nat Rev Immunol 10 47 58

10. McGheeJD

2007 The C. elegans intestine. WormBook 1 36

11. SifriCD

BegunJ

AusubelFM

2005 The worm has turned—microbial virulence modeled in Caenorhabditis elegans. Trends Microbiol 13 119 127

12. WaterfieldNR

WrenBW

Ffrench-ConstantRH

2004 Invertebrates as a source of emerging human pathogens. Nat Rev Micro 2 833 841

13. LyczakJB

CannonCL

PierGB

2000 Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2 1051 1060

14. LyczakJB

CannonCL

PierGB

2002 Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15 194 222

15. SifriCD

AusubelFM

2004 Use of simple non-vertebrate hosts to model mammalian pathogenesis.

CossartP

BoquetP

NormarkS

RappuoliR

Cellular Microbiology. 2 ed Washington, D.C. ASM Press 543 563

16. CunyC

FriedrichA

KozytskaS

LayerF

NübelU

2009 Emergence of methicillin-resistant Staphylococcus aureus (MRSA) in different animal species. Int J Med Microbiol

17. SifriCD

BegunJ

AusubelFM

CalderwoodSB

2003 Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis. Infect Immun 71 2208 2217

18. BoucherHW

CoreyGR

2008 Epidemiology of methicillin-resistant Staphylococcus aureus. CLIN INFECT DIS 46 Suppl 5 S344 349

19. GrahamPL

LinSX

LarsonEL

2006 A U.S. population-based survey of Staphylococcus aureus colonization. Annals of Internal Medicine 144 318 325

20. GordonRJ

LowyFD

2008 Pathogenesis of methicillin-resistant Staphylococcus aureus infection. CLIN INFECT DIS 46 Suppl 5 S350 359

21. DiepBA

OttoM

2008 The role of virulence determinants in community-associated MRSA pathogenesis. Trends Microbiol 16 361 369

22. NizetV

2007 Understanding how leading bacterial pathogens subvert innate immunity to reveal novel therapeutic targets. J Allergy Clin Immunol 120 13 22

23. von Köckritz-BlickwedeM

RohdeM

OehmckeS

MillerLS

CheungAL

2008 Immunological mechanisms underlying the genetic predisposition to severe Staphylococcus aureus infection in the mouse model. Am J Pathol 173 1657 1668

24. TanMW

Mahajan-MiklosS

AusubelFM

1999 Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci USA 96 715 720

25. TanMW

RahmeLG

SternbergJA

TompkinsRG

AusubelFM

1999 Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc Natl Acad Sci USA 96 2408 2413

26. GarsinDA

SifriCD

MylonakisE

QinX

SinghKV

2001 A simple model host for identifying Gram-positive virulence factors. Proc Natl Acad Sci USA 98 10892 10897

27. PowellJR

KimDH

AusubelFM

2009 The G protein-coupled receptor FSHR-1 is required for the Caenorhabditis elegans innate immune response. Proc Natl Acad Sci U S A 106 2782 2787

28. GarsinDA

VillanuevaJM

BegunJ

KimDH

SifriCD

2003 Long-lived C. elegans daf-2 mutants are resistant to bacterial pathogens. Science 300 1921

29. KimDH

FeinbaumR

AlloingG

EmersonFE

GarsinDA

2002 A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 297 623 626

30. BegunJ

SifriCD

GoldmanS

CalderwoodSB

AusubelFM

2005 Staphylococcus aureus virulence factors identified by using a high-throughput Caenorhabditis elegans-killing model. Infect Immun 73 872 877

31. BaeT

BangerAK

WallaceA

GlassEM

AslundF

2004 Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. Proc Natl Acad Sci USA 101 12312 12317

32. SkaarEP

HumayunM

BaeT

DeBordKL

SchneewindO

2004 Iron-source preference of Staphylococcus aureus infections. Science 305 1626 1628

33. Mahajan-MiklosS

TanMW

RahmeLG

AusubelFM

1999 Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell 96 47 56

34. DarbyC

CosmaCL

ThomasJH

ManoilC

1999 Lethal paralysis of Caenorhabditis elegans by Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96 15202 15207

35. KuehnMJ

KestyNC

2005 Bacterial outer membrane vesicles and the host-pathogen interaction. Genes & Development 19 2645 2655

36. LamJ

ChanR

LamK

CostertonJW

1980 Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect Immun 28 546 556

37. NaikS

SmithF

HoJ

CroftNM

DomizioP

2008 Staphylococcal enterotoxins G and I, a cause of severe but reversible neonatal enteropathy. Clin Gastroenterol Hepatol 6 251 254

38. KotlerDP

SandkovskyU

SchlievertPM

SordilloEM

2007 Toxic shock-like syndrome associated with staphylococcal enterocolitis in an HIV-infected man. CLIN INFECT DIS 44 e121 123

39. AmaralMM

CoelhoLR

FloresRP

SouzaRR

Silva-CarvalhoMC

2005 The predominant variant of the Brazilian epidemic clonal complex of methicillin-resistant Staphylococcus aureus has an enhanced ability to produce biofilm and to adhere to and invade airway epithelial cells. J Infect Dis 192 801 810

40. KamarasJ

MurrellWG

2001 Intestinal epithelial damage in sids babies and its similarity to that caused by bacterial toxins in the rabbit. Pathology 33 197 203

41. KamarasJ

MurrellWG

2001 The effect of bacterial enterotoxins implicated in SIDS on the rabbit intestine. Pathology 33 187 196

42. da SilvaMCA

ZahmJ-M

GrasD

BajoletO

AbelyM

2004 Dynamic interaction between airway epithelial cells and Staphylococcus aureus. Am J Physiol Lung Cell Mol Physiol 287 L543 551

43. ZetolaN

FrancisJS

NuermbergerEL

BishaiWR

2005 Community-acquired meticillin-resistant Staphylococcus aureus: an emerging threat. Lancet Infect Dis 5 275 286

44. TroemelER

ChuSW

ReinkeV

LeeSS

AusubelFM

2006 p38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans. PLoS Genet 2 e183

45. Mashburn-WarrenL

McLeanRJC

WhiteleyM

2008 Gram-negative outer membrane vesicles: beyond the cell surface. Geobiology 6 214 219

46. HodgkinJ

KuwabaraPE

CorneliussenB

2000 A novel bacterial pathogen, Microbacterium nematophilum, induces morphological change in the nematode C. elegans. Curr Biol 10 1615 1618

47. NicholasHR

HodgkinJ

2004 The ERK MAP kinase cascade mediates tail swelling and a protective response to rectal infection in C. elegans. Curr Biol 14 1256 1261

48. NicholasHR

HodgkinJ

2009 The C. elegans Hox gene egl-5 is required for correct development of the hermaphrodite hindgut and for the response to rectal infection by Microbacterium nematophilum. Dev Biol 329 16 24

49. ShimodaM

OhkiK

ShimamotoY

KohashiO

1995 Morphology of defensin-treated Staphylococcus aureus. Infect Immun 63 2886 2891

50. WongD

BazopoulouD

PujolN

TavernarakisN

EwbankJJ

2007 Genome-wide investigation reveals pathogen-specific and shared signatures in the response of Caenorhabditis elegans to infection. Genome Biol 8 R194

51. GeijtenbeekTBH

GringhuisSI

2009 Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol 9 465 479

52. YuY

YuY

HuangH

FengK

PanM

2007 A short-form C-type lectin from amphioxus acts as a direct microbial killing protein via interaction with peptidoglycan and glucan. J Immunol 179 8425 8434

53. CashHL

WhithamCV

BehrendtCL

HooperLV

2006 Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313 1126 1130

54. KabelitzD

MedzhitovR

2007 Innate immunity—cross-talk with adaptive immunity through pattern recognition receptors and cytokines. Curr Opin Immunol 19 1 3

55. HuffmanDL

AbramiL

SasikR

CorbeilJ

van der GootFG

2004 Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins. Proc Natl Acad Sci USA 101 10995 11000

56. Van GilstMR

HadjivassiliouH

YamamotoKR

2005 A Caenorhabditis elegans nutrient response system partially dependent on nuclear receptor NHR-49. Proc Natl Acad Sci USA 102 13496 13501

57. VanceRE

IsbergRR

PortnoyDA

2009 Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host & Microbe 6 10 21

58. PujolN

LinkEM

LiuLX

KurzCL

AlloingG

2001 A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Curr Biol 11 809 821

59. TenorJL

AballayA

2008 A conserved Toll-like receptor is required for Caenorhabditis elegans innate immunity. EMBO Rep 9 103 109

60. TakedaK

KaishoT

AkiraS

2003 Toll-like receptors. Annu Rev Immunol 21 335 376

61. O'RourkeD

BabanD

DemidovaM

MottR

HodgkinJ

2006 Genomic clusters, putative pathogen recognition molecules, and antimicrobial genes are induced by infection of C. elegans with M. nematophilum. Genome Res 16 1005 1016

62. SchulenburgH

HoeppnerMP

WeinerJ

Bornberg-BauerE

2008 Specificity of the innate immune system and diversity of C-type lectin domain (CTLD) proteins in the nematode Caenorhabditis elegans. Immunobiology 213 237 250

63. SigmondT

FehérJ

BaksaA

PástiG

PálfiaZ

2008 Qualitative and quantitative characterization of autophagy in Caenorhabditis elegans by electron microscopy. Meth Enzymol 451 467 491

64. JiaK

ThomasC

AkbarM

SunQ

Adams-HuetB

2009 Autophagy genes protect against Salmonella typhimurium infection and mediate insulin signaling-regulated pathogen resistance. Proc Natl Acad Sci USA 106 14564 14569

65. DereticV

2009 Multiple regulatory and effector roles of autophagy in immunity. Curr Opin Immunol 21 53 62

66. WarehamDW

PapakonstantinopoulouA

CurtisMA

2005 The Pseudomonas aeruginosa PA14 type III secretion system is expressed but not essential to virulence in the Caenorhabditis elegans-P. aeruginosa pathogenicity model. FEMS Microbiol Lett 242 209 216

67. McBroomAJ

KuehnMJ

2007 Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol Microbiol 63 545 558

68. TroemelE

ChuS

ReinkeV

LeeS

AusubelFM

2006 p38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans. PLoS Genet 2 e183

69. EstesKA

DunbarTL

PowellJR

AusubelFM

TroemelER

2010 bZIP transcription factor zip-2 mediates an early response to Pseudomonas aeruginosa infection in Caenorhabditis elegans. Proc Natl Acad Sci USA 107 2153 2158

70. MedzhitovR

2009 Approaching the asymptote: 20 years later. Immunity 30 766 775

71. VanceR

IsbergR

PortnoyD

2009 Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host & Microbe 6 10 21

72. Fernandes-AlnemriT

WuJ

YuJ-W

DattaP

MillerB

2007 The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death and Differentiation 14 1590 1604

73. VollmerW

BlanotD

de PedroMA

2008 Peptidoglycan structure and architecture. FEMS Microbiol Rev 32 149 167

74. BorjessonDL

KobayashiSD

WhitneyAR

VoyichJM

ArgueCM

2005 Insights into pathogen immune evasion mechanisms: Anaplasma phagocytophilum fails to induce an apoptosis differentiation program in human neutrophils. J Immunol 174 6364 6372

75. GemsD

McElweeJJ

2005 Broad spectrum detoxification: the major longevity assurance process regulated by insulin/IGF-1 signaling? Mech Ageing Dev 126 381 387

76. DannSM

EckmannL

2007 Innate immune defenses in the intestinal tract. Curr Opin Gastroenterol 23 115 120

77. SalzetM

2001 Vertebrate innate immunity resembles a mosaic of invertebrate immune responses. Trends Immunol 22 285 288

78. AlperS

LawsR

LackfordB

BoydWA

DunlapP

2008 Identification of innate immunity genes and pathways using a comparative genomics approach. Proc Natl Acad Sci USA 105 7016 7021

79. MuirRE

TanMW

2008 Virulence of Leucobacter chromiireducens subsp. solipictus to Caenorhabditis elegans: characterization of a novel host-pathogen interaction. Appl Environ Microbiol 74 4185 4198

80. PearceEL

WalshMC

CejasPJ

HarmsGM

ShenH

2009 Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460 103 107

81. AnagnostouSH

ShepherdPR

2008 Glucose induces an autocrine activation of the Wnt/beta-catenin pathway in macrophage cell lines. Biochem J 416 211 218

82. BensingerSJ

TontonozP

2008 Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature 454 470 477

83. FroyO

2005 Regulation of mammalian defensin expression by Toll-like receptor-dependent and independent signalling pathways. Cell Microbiol 7 1387 1397

84. EvansEA

ChenWC

TanM-W

2008 The DAF-2 insulin-like signaling pathway independently regulates aging and immunity in C. elegans. Aging Cell 7 879 893

85. WatanabeA

MiyazawaS

KitamiM

TabunokiH

UedaK

2006 Characterization of a novel C-type lectin, Bombyx mori multibinding protein, from the B. mori hemolymph: mechanism of wide-range microorganism recognition and role in immunity. J Immunol 177 4594 4604

86. YuXQ

GanH

KanostMR

1999 Immulectin, an inducible C-type lectin from an insect, Manduca sexta, stimulates activation of plasma prophenol oxidase. Insect Biochem Mol Biol 29 585 597

87. YuX-Q

KanostMR

2004 Immulectin-2, a pattern recognition receptor that stimulates hemocyte encapsulation and melanization in the tobacco hornworm, Manduca sexta. Dev Comp Immunol 28 891 900

88. PowellJR

AusubelFM

2008 Models of Caenorhabditis elegans infection by bacterial and fungal pathogens. Methods Mol Biol 415 403 427

89. WengL

DaiH

ZhanY

HeY

StepaniantsSB

2006 Rosetta error model for gene expression analysis. Bioinformatics 22 1111 1121

90. O'rourkeD

BabanD

DemidovaM

MottR

HodgkinJ

2006 Genomic clusters, putative pathogen recognition molecules, and antimicrobial genes are induced by infection of C. elegans with M. nematophilum. Genome Research 16 1005 1016

91. GrewalA

LambertP

StocktonJ

2007 Analysis of expression data: an overview. Current protocols in human genetics/editorial board, Jonathan L Haines [et al] Chapter 11: Unit11.14

92. Gravato-NobreMJ

NicholasHR

NijlandR

O'rourkeD

WhittingtonDE

2005 Multiple genes affect sensitivity of Caenorhabditis elegans to the bacterial pathogen Microbacterium nematophilum. Genetics 171 1033 1045

93. PfafflMW

2001 A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29 e45

94. HobertO

2002 PCR fusion-based approach to create reporter gene constructs for expression analysis in transgenic C. elegans. BioTechniques 32 728 730

95. TimmonsL

CourtDL

FireA

2001 Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263 103 112

96. ReboulJ

VaglioP

RualJ-F

LameschP

MartinezM

2003 C. elegans ORFeome version 1.1: experimental verification of the genome annotation and resource for proteome-scale protein expression. Nat Genet 34 35 41

97. RualJF

CeronJ

KorethJ

HaoT

NicotAS

2004 Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res 14 2162 2168

98. TusherVG

TibshiraniR

ChuG

2001 Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98 5116 5121

99. PetalcorinMIR

JoshuaGW

AgapowP-M

DolphinCT

2005 The fmo genes of Caenorhabditis elegans and C. briggsae: characterisation, gene expression and comparative genomic analysis. Gene 346 83 96

100. PauliF

LiuY

KimYA

ChenP-J

KimSK

2006 Chromosomal clustering and GATA transcriptional regulation of intestine-expressed genes in C. elegans. Development 133 287 295

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#