#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Biogenesis of the Inner Membrane Complex Is Dependent on Vesicular Transport by the Alveolate Specific GTPase Rab11B


Apicomplexan parasites belong to a recently recognised group of protozoa referred to as Alveolata. These protists contain membranous sacs (alveoli) beneath the plasma membrane, termed the Inner Membrane Complex (IMC) in the case of Apicomplexa. During parasite replication the IMC is formed de novo within the mother cell in a process described as internal budding. We hypothesized that an alveolate specific factor is involved in the specific transport of vesicles from the Golgi to the IMC and identified the small GTPase Rab11B as an alveolate specific Rab-GTPase that localises to the growing end of the IMC during replication of Toxoplasma gondii. Conditional interference with Rab11B function leads to a profound defect in IMC biogenesis, indicating that Rab11B is required for the transport of Golgi derived vesicles to the nascent IMC of the daughter cell. Curiously, a block in IMC biogenesis did not affect formation of sub-pellicular microtubules, indicating that IMC biogenesis and formation of sub-pellicular microtubules is not mechanistically linked. We propose a model where Rab11B specifically transports vesicles derived from the Golgi to the immature IMC of the growing daughter parasites.


Vyšlo v časopise: Biogenesis of the Inner Membrane Complex Is Dependent on Vesicular Transport by the Alveolate Specific GTPase Rab11B. PLoS Pathog 6(7): e32767. doi:10.1371/journal.ppat.1001029
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001029

Souhrn

Apicomplexan parasites belong to a recently recognised group of protozoa referred to as Alveolata. These protists contain membranous sacs (alveoli) beneath the plasma membrane, termed the Inner Membrane Complex (IMC) in the case of Apicomplexa. During parasite replication the IMC is formed de novo within the mother cell in a process described as internal budding. We hypothesized that an alveolate specific factor is involved in the specific transport of vesicles from the Golgi to the IMC and identified the small GTPase Rab11B as an alveolate specific Rab-GTPase that localises to the growing end of the IMC during replication of Toxoplasma gondii. Conditional interference with Rab11B function leads to a profound defect in IMC biogenesis, indicating that Rab11B is required for the transport of Golgi derived vesicles to the nascent IMC of the daughter cell. Curiously, a block in IMC biogenesis did not affect formation of sub-pellicular microtubules, indicating that IMC biogenesis and formation of sub-pellicular microtubules is not mechanistically linked. We propose a model where Rab11B specifically transports vesicles derived from the Golgi to the immature IMC of the growing daughter parasites.


Zdroje

1. AdlSM

LeanderBS

SimpsonAG

ArchibaldJM

AndersonOR

2007 Diversity, nomenclature, and taxonomy of protists. Syst Biol 56 684 689

2. Cavalier-SmithT

1993 Kingdom protozoa and its 18 phyla. Microbiol Rev 57 953 994

3. GouldSB

ThamWH

CowmanAF

McFaddenGI

WallerRF

2008 Alveolins, a new family of cortical proteins that define the protist infrakingdom Alveolata. Mol Biol Evol 25 1219 1230

4. BullenHE

TonkinCJ

O'DonnellRA

ThamWH

PapenfussAT

2009 A novel family of Apicomplexan glideosome-associated proteins with an inner membrane-anchoring role. J Biol Chem 284 25353 25363

5. SoldatiD

MeissnerM

2004 Toxoplasma as a novel system for motility. Curr Opin Cell Biol 16 32 40

6. StriepenB

JordanCN

ReiffS

van DoorenGG

2007 Building the perfect parasite: cell division in apicomplexa. PLoS Pathog 3 e78

7. MorrissetteNS

SibleyLD

2002 Cytoskeleton of apicomplexan parasites. Microbiol Mol Biol Rev 66 21 38; table of contents

8. MannT

BeckersC

2001 Characterization of the subpellicular network, a filamentous membrane skeletal component in the parasite Toxoplasma gondii. Mol Biochem Parasitol 115 257 268

9. CyrklaffM

KudryashevM

LeisA

LeonardK

BaumeisterW

2007 Cryoelectron tomography reveals periodic material at the inner side of subpellicular microtubules in apicomplexan parasites. J Exp Med 204 1281 1287

10. BannisterLH

HopkinsJM

FowlerRE

KrishnaS

MitchellGH

2000 Ultrastructure of rhoptry development in Plasmodium falciparum erythrocytic schizonts. Parasitology 121(Pt 3) 273 287

11. BreinichMS

FergusonDJ

FothBJ

van DoorenGG

LebrunM

2009 A dynamin is required for the biogenesis of secretory organelles in Toxoplasma gondii. Curr Biol 19 277 286

12. NishiM

HuK

MurrayJM

RoosDS

2008 Organellar dynamics during the cell cycle of Toxoplasma gondii. J Cell Sci 121 1559 1568

13. PelletierL

SternCA

PypaertM

SheffD

NgoHM

2002 Golgi biogenesis in Toxoplasma gondii. Nature 418 548 552

14. MorrissetteNS

MurrayJM

RoosDS

1997 Subpellicular microtubules associate with an intramembranous particle lattice in the protozoan parasite Toxoplasma gondii. J Cell Sci 110(Pt 1) 35 42

15. HuK

MannT

StriepenB

BeckersCJ

RoosDS

2002 Daughter cell assembly in the protozoan parasite Toxoplasma gondii. Mol Biol Cell 13 593 606

16. GordonJL

BeattyWL

SibleyLD

2008 A novel actin-related protein is associated with daughter cell formation in Toxoplasma gondii. Eukaryot Cell 7 1500 1512

17. GubbelsMJ

VaishnavaS

BootN

DubremetzJF

StriepenB

2006 A MORN-repeat protein is a dynamic component of the Toxoplasma gondii cell division apparatus. J Cell Sci 119 2236 2245

18. HuK

2008 Organizational changes of the daughter basal complex during the parasite replication of Toxoplasma gondii. PLoS Pathog 4 e10

19. FergusonDJ

SahooN

PinchesRA

BumsteadJM

TomleyFM

2008 MORN1 has a conserved role in asexual and sexual development across the apicomplexa. Eukaryot Cell 7 698 711

20. HeaslipAT

DzierszinskiF

SteinB

HuK

TgMORN1 is a key organizer for the basal complex of Toxoplasma gondii. PLoS Pathog 6 e1000754

21. Agop-NersesianC

NaissantB

Ben RachedF

RauchM

KretzschmarA

2009 Rab11A-controlled assembly of the inner membrane complex is required for completion of apicomplexan cytokinesis. PLoS Pathog 5 e1000270

22. StenmarkH

2009 Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10 513 525

23. DumasJJ

ZhuZ

ConnollyJL

LambrightDG

1999 Structural basis of activation and GTP hydrolysis in Rab proteins. Structure 7 413 423

24. MerithewE

HatherlyS

DumasJJ

LaweDC

Heller-HarrisonR

2001 Structural plasticity of an invariant hydrophobic triad in the switch regions of Rab GTPases is a determinant of effector recognition. J Biol Chem 276 13982 13988

25. Cavalier-SmithT

1999 Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 46 347 366

26. Herm-GotzA

Agop-NersesianC

MunterS

GrimleyJS

WandlessTJ

2007 Rapid control of protein level in the apicomplexan Toxoplasma gondii. Nat Methods 4 1003 1005

27. PflugerSL

GoodsonHV

MoranJM

RuggieroCJ

YeX

2005 Receptor for retrograde transport in the apicomplexan parasite Toxoplasma gondii. Eukaryot Cell 4 432 442

28. GrosshansBL

OrtizD

NovickP

2006 Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci U S A 103 11821 11827

29. van der SluijsP

HullM

WebsterP

MaleP

GoudB

1992 The small GTP-binding protein rab4 controls an early sorting event on the endocytic pathway. Cell 70 729 740

30. BucciC

PartonRG

MatherIH

StunnenbergH

SimonsK

1992 The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70 715 728

31. GaskinsE

GilkS

DeVoreN

MannT

WardG

2004 Identification of the membrane receptor of a class XIV myosin in Toxoplasma gondii. J Cell Biol 165 383 393

32. SheinerL

Soldati-FavreD

2008 Protein trafficking inside Toxoplasma gondii. Traffic 9 636 646

33. LalK

FieldMC

CarltonJM

WarwickerJ

HirtRP

2005 Identification of a very large Rab GTPase family in the parasitic protozoan Trichomonas vaginalis. Mol Biochem Parasitol 143 226 235

34. Saito-NakanoY

LoftusBJ

HallN

NozakiT

2005 The diversity of Rab GTPases in Entamoeba histolytica. Exp Parasitol 110 244 252

35. DacksJB

PoonPP

FieldMC

2008 Phylogeny of endocytic components yields insight into the process of nonendosymbiotic organelle evolution. Proc Natl Acad Sci U S A 105 588 593

36. DacksJB

FieldMC

2007 Evolution of the eukaryotic membrane-trafficking system: origin, tempo and mode. J Cell Sci 120 2977 2985

37. MorrissetteNS

SibleyLD

2002 Disruption of microtubules uncouples budding and nuclear division in Toxoplasma gondii. J Cell Sci 115 1017 1025

38. BaluskaF

MenzelD

BarlowPW

2006 Cytokinesis in plant and animal cells: endosomes ‘shut the door’. Dev Biol 294 1 10

39. ColosimoA

XuZ

NovelliG

DallapiccolaB

GruenertDC

1999 Simple version of “megaprimer” PCR for site-directed mutagenesis. Biotechniques 26 870 873

40. HettmannC

HermA

GeiterA

FrankB

SchwarzE

2000 A dibasic motif in the tail of a class XIV apicomplexan myosin is an essential determinant of plasma membrane localization. Mol Biol Cell 11 1385 1400

41. van DoorenGG

ReiffSB

TomovaC

MeissnerM

HumbelBM

2009 A novel dynamin-related protein has been recruited for apicoplast fission in Toxoplasma gondii. Curr Biol 19 267 276

42. RoosDS

DonaldRG

MorrissetteNS

MoultonAL

1994 Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii. Methods Cell Biol 45 27 63

43. DonaldRG

CarterD

UllmanB

RoosDS

1996 Insertional tagging, cloning, and expression of the Toxoplasma gondii hypoxanthine-xanthine-guanine phosphoribosyltransferase gene. Use as a selectable marker for stable transformation. J Biol Chem 271 14010 14019

44. DonaldRG

RoosDS

1993 Stable molecular transformation of Toxoplasma gondii: a selectable dihydrofolate reductase-thymidylate synthase marker based on drug-resistance mutations in malaria. Proc Natl Acad Sci U S A 90 11703 11707

45. KimK

SoldatiD

BoothroydJC

1993 Gene replacement in Toxoplasma gondii with chloramphenicol acetyltransferase as selectable marker. Science 262 911 914

46. MeissnerM

ReissM

ViebigN

CarruthersVB

TourselC

2002 A family of transmembrane microneme proteins of Toxoplasma gondii contain EGF-like domains and function as escorters. J Cell Sci 115 563 574

47. MeissnerM

SchluterD

SoldatiD

2002 Role of Toxoplasma gondii myosin A in powering parasite gliding and host cell invasion. Science 298 837 840

48. FergusonDJ

HenriquezFL

KirisitsMJ

MuenchSP

PriggeST

2005 Maternal inheritance and stage-specific variation of the apicoplast in Toxoplasma gondii during development in the intermediate and definitive host. Eukaryot Cell 4 814 826

49. ChennaR

SugawaraH

KoikeT

LopezR

GibsonTJ

2003 Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31 3497 3500

50. FelsensteinJ

2005 Using the quantitative genetic threshold model for inferences between and within species. Philos Trans R Soc Lond B Biol Sci 360 1427 1434

51. SchmidtHA

StrimmerK

VingronM

von HaeselerA

2002 TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18 502 504

52. PageRD

1996 TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12 357 358

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#