#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Extreme Recombination Frequencies Shape Genome Variation and Evolution in the Honeybee,


Evolution results from changes in allele frequencies in populations. The main forces that cause such changes are natural selection and random genetic drift. However, an additional process, GC-biased gene conversion (gBGC), associated with meiotic recombination, affects the probability that alleles are passed from one generation to the next. The honeybee, Apis mellifera, has extremely high recombination rates—more than 20 times to those observed in humans. However, the reason for this is unknown and the effects of such high recombination rates on evolution are not well understood. Here we use patterns of genetic variation in the genomes of 30 honeybees to infer variation in the rate of recombination across the genome. We find that recombination rates and levels of genetic variation are strongly correlated, which is indicative of a pervasive impact of natural selection on genetic variation. We also infer a major role of DNA methylation in determining recombination rates in genes. Patterns of genetic variation appear to be strongly skewed due to the effects of gBGC, suggesting that recombination generates a bias in transmission of alleles during meiosis. This process seems to be interfering with the efficacy of selection at removing deleterious alleles and favouring beneficial ones. Recombination therefore has a huge impact on genetic variation and evolution in honeybees and appears to play a dominant role in genome evolution.


Vyšlo v časopise: Extreme Recombination Frequencies Shape Genome Variation and Evolution in the Honeybee,. PLoS Genet 11(4): e32767. doi:10.1371/journal.pgen.1005189
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005189

Souhrn

Evolution results from changes in allele frequencies in populations. The main forces that cause such changes are natural selection and random genetic drift. However, an additional process, GC-biased gene conversion (gBGC), associated with meiotic recombination, affects the probability that alleles are passed from one generation to the next. The honeybee, Apis mellifera, has extremely high recombination rates—more than 20 times to those observed in humans. However, the reason for this is unknown and the effects of such high recombination rates on evolution are not well understood. Here we use patterns of genetic variation in the genomes of 30 honeybees to infer variation in the rate of recombination across the genome. We find that recombination rates and levels of genetic variation are strongly correlated, which is indicative of a pervasive impact of natural selection on genetic variation. We also infer a major role of DNA methylation in determining recombination rates in genes. Patterns of genetic variation appear to be strongly skewed due to the effects of gBGC, suggesting that recombination generates a bias in transmission of alleles during meiosis. This process seems to be interfering with the efficacy of selection at removing deleterious alleles and favouring beneficial ones. Recombination therefore has a huge impact on genetic variation and evolution in honeybees and appears to play a dominant role in genome evolution.


Zdroje

1. Coop G, Przeworski M. An evolutionary view of human recombination. Nat Rev Genet. 2007;8: 23–34. 17146469

2. Beye M, Gattermeier I, Hasselmann M, Gempe T, Schioett M, Baines JF, et al. Exceptionally high levels of recombination across the honey bee genome. Genome Res. 2006;16: 1339–44. doi: 10.1101/gr.5680406 17065604

3. Solignac M, Mougel F, Vautrin D, Monnerot M, Cornuet J-M. A third-generation microsatellite-based linkage map of the honey bee, Apis mellifera, and its comparison with the sequence-based physical map. Genome Biol. 2007;8: R66. doi: 10.1186/gb-2007-8-4-r66 17459148

4. Liu H, Zhang X, Huang J, Chen J-Q, Tian D, Hurst LD, et al. Causes and consequences of crossing-over evidenced via a high-resolution recombinational landscape of the honey bee. Genome Biol. 2015;16: 15. doi: 10.1186/s13059-014-0566-0 25651211

5. Meznar ER, Gadau J, Koeniger N, Rueppell O. Comparative linkage mapping suggests a high recombination rate in all honeybees. J Hered. 2010;101 Suppl 1: S118–126. doi: 10.1093/jhered/esq002 20212006

6. Wilfert L, Gadau J, Schmid-Hempel P. Variation in genomic recombination rates among animal taxa and the case of social insects. Heredity. 2007;98: 189–197. doi: 10.1038/sj.hdy.6800950 17389895

7. Paigen K, Petkov P. Mammalian recombination hot spots: properties, control and evolution. Nat Rev Genet. 2010;11: 221–33. doi: 10.1038/nrg2712 20168297

8. Choi K, Zhao X, Kelly KA, Venn O, Higgins JD, Yelina NE, et al. Arabidopsis meiotic crossover hot spots overlap with H2A.Z nucleosomes at gene promoters. Nat Genet. 2013;45: 1327–1336. doi: 10.1038/ng.2766 24056716

9. Pan J, Sasaki M, Kniewel R, Murakami H, Blitzblau HG, Tischfield SE, et al. A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. Cell. 2011;144: 719–731. doi: 10.1016/j.cell.2011.02.009 21376234

10. Myers S, Bottolo L, Freeman C, McVean G, Donnelly P. A fine-scale map of recombination rates and hotspots across the human genome. Science. 2005;310: 321–4. doi: 10.1126/science.1117196 16224025

11. Baudat F, Buard J, Grey C, Fledel-Alon A, Ober C, Przeworski M, et al. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science. 2010;327: 836–840. doi: 10.1126/Science.1183439 20044539

12. Myers S, Bowden R, Tumian A, Bontrop RE, Freeman C, Macfie TS, et al. Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination. Science. 2010;327: 876–9. doi: 10.1126/science.1182363 20044541

13. Parvanov ED, Petkov PM, Paigen K. Prdm9 controls activation of mammalian recombination hotspots. Science. 2010;327: 835–835. doi: 10.1126/Science.1181495 20044538

14. Smagulova F, Gregoretti IV, Brick K, Khil P, Camerini-Otero RD, Petukhova GV. Genome-wide analysis reveals novel molecular features of mouse recombination hotspots. Nature. 2011;472: 375–378. doi: 10.1038/nature09869 21460839

15. Baudat F, Imai Y, de Massy B. Meiotic recombination in mammals: localization and regulation. Nat Rev Genet. 2013;14: 794–806. doi: 10.1038/nrg3573 24136506

16. Auton A, Fledel-Alon A, Pfeifer S, Venn O, Ségurel L, Street T, et al. A fine-scale chimpanzee genetic map from population sequencing. Science. 2012;336: 193–198. doi: 10.1126/science.1216872 22422862

17. Axelsson E, Webster MT, Ratnakumar A, Consortium L, Ponting CP, Lindblad-Toh K. Death of PRDM9 coincides with stabilization of the recombination landscape in the dog genome. Genome Res. 2012;22: 51–63. doi: 10.1101/gr.124123.111 22006216

18. Berglund J, Quilez J, Arndt PF, Webster MT. Germline methylation patterns determine the distribution of recombination events in the dog genome. Genome Biol Evol. 2014; evu282. doi: 10.1093/gbe/evu282

19. Kaur T, Rockman MV. Crossover heterogeneity in the absence of hotspots in Caenorhabditis elegans. Genetics. 2014;196: 137–148. doi: 10.1534/genetics.113.158857 24172135

20. Chan AH, Jenkins PA, Song YS. Genome-wide fine-scale recombination rate variation in Drosophila melanogaster. PLoS Genet. 2012;8: e1003090. doi: 10.1371/journal.pgen.1003090 23284288

21. Comeron JM, Ratnappan R, Bailin S. The many landscapes of recombination in Drosophila melanogaster. PLoS Genet. 2012;8: e1002905. doi: 10.1371/journal.pgen.1002905 23071443

22. Singh ND, Aquadro CF, Clark AG. Estimation of Fine-Scale Recombination Intensity Variation in the white—echinus Interval of D. melanogaster. J Mol Evol. 2009;69: 42–53. doi: 10.1007/s00239-009-9250-5 19504037

23. Kulathinal RJ, Bennett SM, Fitzpatrick CL, Noor MA. Fine-scale mapping of recombination rate in Drosophila refines its correlation to diversity and divergence. Proc Natl Acad Sci U S A. 2008;105: 10051–6. doi: 10.1073/pnas.0801848105 18621713

24. Mougel F, Poursat M-A, Beaume N, Vautrin D, Solignac M. High-resolution linkage map for two honeybee chromosomes: the hotspot quest. Mol Genet Genomics. 2014;289: 11–24. doi: 10.1007/s00438-013-0784-2 24162559

25. Wang Y, Jorda M, Jones PL, Maleszka R, Ling X, Robertson HM, et al. Functional CpG methylation system in a social insect. Science. 2006;314: 645–7. doi: 10.1126/science.1135213 17068262

26. HGSC. Insights into social insects from the genome of the honeybee Apis mellifera. Nature. 2006;443: 931–49. 17073008

27. Sigurdsson MI, Smith AV, Bjornsson HT, Jonsson JJ. HapMap methylation-associated SNPs, markers of germline DNA methylation, positively correlate with regional levels of human meiotic recombination. Genome Res. 2009;19: 581–589. doi: 10.1101/gr.086181.108 19158364

28. Cutter AD, Payseur BA. Genomic signatures of selection at linked sites: unifying the disparity among species. Nat Rev Genet. 2013;14: 262–274. doi: 10.1038/nrg3425 23478346

29. Webster MT, Hurst LD. Direct and indirect consequences of meiotic recombination: implications for genome evolution. Trends Genet. 2012;28: 101–9. doi: 10.1016/j.tig.2011.11.002 22154475

30. Maynard Smith JM, Haigh J. The hitchhiking effect of a favourable gene. Genet Res. 1974;23: 23–35. 4407212

31. Charlesworth B, Morgan MT, Charlesworth D. The effect of deleterious mutations on neutral molecular variation. Genetics. 1993;134: 1289–1303. 8375663

32. Sella G, Petrov DA, Przeworski M, Andolfatto P. Pervasive natural selection in the Drosophila genome? PLoS Genet. 2009;5: e1000495. doi: 10.1371/journal.pgen.1000495 19503600

33. Begun DJ, Holloway AK, Stevens K, Hillier LW, Poh YP, Hahn MW, et al. Population genomics: whole-genome analysis of polymorphism and divergence in Drosophila simulans. PLoS Biol. 2007;5: e310. doi: 10.1371/journal.pbio.0050310 17988176

34. McGaugh SE, Heil CSS, Manzano-Winkler B, Loewe L, Goldstein S, Himmel TL, et al. Recombination Modulates How Selection Affects Linked Sites in Drosophila. PLoS Biol. 2012;10: e1001422. doi: 10.1371/journal.pbio.1001422 23152720

35. Lohmueller KE, Albrechtsen A, Li Y, Kim SY, Korneliussen T, Vinckenbosch N, et al. Natural selection affects multiple aspects of genetic variation at putatively neutral sites across the human genome. PLoS Genet. 2011;7: e1002326. doi: 10.1371/journal.pgen.1002326 22022285

36. Cai JJ, Macpherson JM, Sella G, Petrov DA. Pervasive hitchhiking at coding and regulatory sites in humans. PLoS Genet. 2009;5: e1000336. doi: 10.1371/journal.pgen.1000336 19148272

37. Wallberg A, Han F, Wellhagen G, Dahle B, Kawata M, Haddad N, et al. A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera. Nat Genet. 2014;46: 1081–1088. doi: 10.1038/ng.3077 25151355

38. Baudry E, Solignac M, Garnery L, Gries M, Cornuet JM, Koeniger N. Relatedness among honeybees (Apis mellifera) of a drone congregation. Proc R Soc B-Biol Sci. 1998;265: 2009–2014.

39. Kent CF, Minaei S, Harpur BA, Zayed A. Recombination is associated with the evolution of genome structure and worker behavior in honey bees. Proc Natl Acad Sci. 2012;109: 18012–18017. doi: 10.1073/pnas.1208094109 23071321

40. Smith CR, Toth AL, Suarez AV, Robinson GE. Genetic and genomic analyses of the division of labour in insect societies. Nat Rev Genet. 2008;9: 735–48. doi: 10.1038/nrg2429 18802413

41. Oldroyd BP, Fewell JH. Genetic diversity promotes homeostasis in insect colonies. Trends Ecol Evol. 2007;22: 408–13. doi: 10.1016/j.tree.2007.06.001 17573148

42. Duret L, Galtier N. Biased gene conversion and the evolution of mammalian genomic landscapes. Annu Rev Genomics Hum Genet. 2009;10: 285–311. doi: 10.1146/annurev-genom-082908-150001 19630562

43. Montoya-Burgos JI, Boursot P, Galtier N. Recombination explains isochores in mammalian genomes. Trends Genet TIG. 2003;19: 128–30. 12615004

44. Galtier N. Gene conversion drives GC content evolution in mammalian histones. Trends Genet TIG. 2003;19: 65–8. 12547511

45. Duret L, Arndt PF. The impact of recombination on nucleotide substitutions in the human genome. PLoS Genet. 2008;4: e1000071. doi: 10.1371/journal.pgen.1000071 18464896

46. Mancera E, Bourgon R, Brozzi A, Huber W, Steinmetz LM. High-resolution mapping of meiotic crossovers and non-crossovers in yeast. Nature. 2008;454: 479–85. doi: 10.1038/nature07135 18615017

47. Williams AL, Geneovese G, Dyer T, Truax K, Jun G, Patterson N, et al. Non-crossover gene conversions show strong GC bias and unexpected clustering in humans. bioRxiv. 2014; 009175. doi: 10.1101/009175

48. Nagylaki T. Evolution of a finite population under gene conversion. Proc Natl Acad Sci U S A. 1983;80: 6278–81. 6578508

49. Webster MT, Smith NG. Fixation biases affecting human SNPs. Trends Genet TIG. 2004;20: 122–6. 15049304

50. Eyre-Walker A. Evidence of selection on silent site base composition in mammals: potential implications for the evolution of isochores and junk DNA. Genetics. 1999;152: 675–683. 10353909

51. Duret L, Semon M, Piganeau G, Mouchiroud D, Galtier N. Vanishing GC-rich isochores in mammalian genomes. Genetics. 2002;162: 1837–47. 12524353

52. Berglund J, Pollard KS, Webster MT. Hotspots of biased nucleotide substitutions in human genes. PLoS Biol. 2009;7: e26. doi: 10.1371/journal.pbio.1000026 19175294

53. Galtier N, Duret L. Adaptation or biased gene conversion? Extending the null hypothesis of molecular evolution. Trends Genet TIG. 2007;23: 273–7. 17418442

54. Galtier N, Duret L, Glemin S, Ranwez V. GC-biased gene conversion promotes the fixation of deleterious amino acid changes in primates. Trends Genet TIG. 2009;25: 1–5. doi: 10.1016/j.tig.2008.10.011

55. Lachance J, Tishkoff SA. Biased Gene Conversion Skews Allele Frequencies in Human Populations, Increasing the Disease Burden of Recessive Alleles. Am J Hum Genet. 2014;95: 408–420. doi: 10.1016/j.ajhg.2014.09.008 25279983

56. Necsulea A, Popa A, Cooper DN, Stenson PD, Mouchiroud D, Gautier C, et al. Meiotic recombination favors the spreading of deleterious mutations in human populations. Hum Mutat. 2011;32: 198–206. doi: 10.1002/humu.21407 21120948

57. Glemin S, Arndt PF, Messer PW, Petrov D, Galtier N, Duret L. Quantification of GC-biased gene conversion in the human genome. bioRxiv. 2014; 010173. doi: 10.1101/010173

58. Lartillot N. Phylogenetic patterns of GC-biased gene conversion in placental mammals and the evolutionary dynamics of recombination landscapes. Mol Biol Evol. 2013;30: 489–502. doi: 10.1093/molbev/mss239 23079417

59. Altshuler DL, Durbin RM, Abecasis GR, Bentley DR, Chakravarti A, Clark AG, et al. A map of human genome variation from population-scale sequencing. Nature. 2010;467: 1061–1073. doi: 10.1038/Nature09534 20981092

60. Lyko F, Foret S, Kucharski R, Wolf S, Falckenhayn C, Maleszka R. The Honey Bee Epigenomes: Differential Methylation of Brain DNA in Queens and Workers. PLoS Biol. 2010;8: e1000506. doi: 10.1371/journal.pbio.1000506 21072239

61. Elango N, Hunt BG, Goodisman MA, Yi SV. DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera. Proc Natl Acad Sci U S A. 2009;106: 11206–11. doi: 10.1073/pnas.0900301106 19556545

62. Drewell RA, Bush EC, Remnant EJ, Wong GT, Beeler SM, Stringham JL, et al. The dynamic DNA methylation cycle from egg to sperm in the honey bee Apis mellifera. Dev Camb Engl. 2014;141: 2702–2711. doi: 10.1242/dev.110163 24924193

63. Grozinger CM, Fan Y, Hoover SER, Winston ML. Genome-wide analysis reveals differences in brain gene expression patterns associated with caste and reproductive status in honey bees (Apis mellifera). Mol Ecol. 2007;16: 4837–4848. doi: 10.1111/j.1365-294X.2007.03545.x 17927707

64. Zayed A, Naeger NL, Rodriguez-Zas SL, Robinson GE. Common and novel transcriptional routes to behavioral maturation in worker and male honey bees. Genes Brain Behav. 2012;11: 253–261. doi: 10.1111/j.1601-183X.2011.00750.x 22050787

65. McKim KS, Green-Marroquin BL, Sekelsky JJ, Chin G, Steinberg C, Khodosh R, et al. Meiotic Synapsis in the Absence of Recombination. Science. 1998;279: 876–878. doi: 10.1126/science.279.5352.876 9452390

66. Dernburg AF, McDonald K, Moulder G, Barstead R, Dresser M, Villeneuve AM. Meiotic recombination in C-elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell. 1998;94: 387–398. doi: 10.1016/S0092-8674(00)81481-6 9708740

67. Hill WG, Robertson A. The effect of linkage on limits to artificial selection. Genet Res. 1966;8: 269–94. 5980116

68. Duret L, Galtier N. The covariation between TpA deficiency, CpG deficiency, and G + C content of human isochores is due to a mathematical artifact. Mol Biol Evol. 2000;17: 1620–1625. 11070050

69. Maloisel L, Rossignol J-L. Suppression of crossing-over by DNA methylation in Ascobolus. Genes Dev. 1998;12: 1381–1389. 9573054

70. Henderson IR. Control of meiotic recombination frequency in plant genomes. Curr Opin Plant Biol. 2012;15: 556–561. doi: 10.1016/j.pbi.2012.09.002 23017241

71. Auton A, Rui Li Y, Kidd J, Oliveira K, Nadel J, Holloway JK, et al. Genetic Recombination Is Targeted towards Gene Promoter Regions in Dogs. PLoS Genet. 2013;9: e1003984. doi: 10.1371/journal.pgen.1003984 24348265

72. Auton A, Fledel-Alon A, Pfeifer S, Venn O, Segurel L, Street T, et al. A fine-scale chimpanzee genetic map from population sequencing. Science. 2012;[epub ahead of print]. doi: 10.1126/science.1216872

73. Hartfield M, Keightley PD. Current hypotheses for the evolution of sex and recombination. Integr Zool. 2012;7: 192–209. doi: 10.1111/j.1749-4877.2012.00284.x 22691203

74. Brown TC, Jiricny J. Different base/base mispairs are corrected with different efficiencies and specificities in monkey kidney cells. Cell. 1988;54: 705–11. 2842064

75. Brown TC, Jiricny J. Repair of base-base mismatches in simian and human cells. Genome. 1989;31: 578–83. 2561110

76. Brown TC, Jiricny J. A specific mismatch repair event protects mammalian cells from loss of 5-methylcytosine. Cell. 1987;50: 945–950. 3040266

77. Takahata N. Allelic genealogy and human evolution. Mol Biol Evol. 1993;10: 2–22. 8450756

78. Robinson MC, Stone EA, Singh ND. Population Genomic Analysis Reveals No Evidence for GC-Biased Gene Conversion in Drosophila melanogaster. Mol Biol Evol. 2014;31: 425–433. doi: 10.1093/molbev/mst220 24214536

79. Watterson GA. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975;7: 256–276. 1145509

80. Elsik CG, Worley KC, Bennett AK, Beye M, Camara F, Childers CP, et al. Finding the missing honey bee genes: lessons learned from a genome upgrade. BMC Genomics. 2014;15: 86. doi: 10.1186/1471-2164-15-86 24479613

81. Auton A, McVean G. Recombination rate estimation in the presence of hotspots. Genome Res. 2007;17: 1219–1227. doi: 10.1101/gr.6386707 17623807

82. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25: 3389–3402. 9254694

83. Eyre-Walker A, Woolfit M, Phelps T. The distribution of fitness effects of new deleterious amino acid mutations in humans. Genetics. 2006;173: 891–900. doi: 10.1534/genetics.106.057570 16547091

84. Muyle A, Serres-Giardi L, Ressayre A, Escobar J, Glémin S. GC-biased gene conversion and selection affect GC content in the Oryza genus (rice). Mol Biol Evol. 2011;28: 2695–2706. doi: 10.1093/molbev/msr104 21504892

85. Hernandez RD, Williamson SH, Bustamante CD. Context dependence, ancestral misidentification, and spurious signatures of natural selection. Mol Biol Evol. 2007;24: 1792–800. 17545186

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#