#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Asymmetric Transcript Discovery by RNA-seq in . Blastomeres Identifies , a Gene Important for Anterior Morphogenesis


At key moments in development, asymmetric cell divisions give rise to daughter cells of differing characteristics, a process that promotes cell-type diversity in complex organisms. The first cell division of the C. elegans early embryo is a powerful model for understanding asymmetric cell division because the timing of divisions and the placement of their division planes are precise and reproducible. We surveyed the mRNA content of each daughter cell in the C. elegans 2-cell embryo using low-input RNA sequencing. We identified several hundred asymmetric transcripts and tested them for functions in development. We found that the gene neg-1 produced mRNA and protein preferentially on the anterior (head-side) of 2-cell and 4-cell stage embryos and that loss of neg-1 led to consequences in anterior morphogenesis later in development. We also analyzed the asymmetric transcripts using quantitative microscopy, bioinformatics comparisons with previously existing datasets, and RNA sequence motif discovery to gain insight to the mechanisms by which asymmetric abundance patterns arise.


Vyšlo v časopise: Asymmetric Transcript Discovery by RNA-seq in . Blastomeres Identifies , a Gene Important for Anterior Morphogenesis. PLoS Genet 11(4): e32767. doi:10.1371/journal.pgen.1005117
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005117

Souhrn

At key moments in development, asymmetric cell divisions give rise to daughter cells of differing characteristics, a process that promotes cell-type diversity in complex organisms. The first cell division of the C. elegans early embryo is a powerful model for understanding asymmetric cell division because the timing of divisions and the placement of their division planes are precise and reproducible. We surveyed the mRNA content of each daughter cell in the C. elegans 2-cell embryo using low-input RNA sequencing. We identified several hundred asymmetric transcripts and tested them for functions in development. We found that the gene neg-1 produced mRNA and protein preferentially on the anterior (head-side) of 2-cell and 4-cell stage embryos and that loss of neg-1 led to consequences in anterior morphogenesis later in development. We also analyzed the asymmetric transcripts using quantitative microscopy, bioinformatics comparisons with previously existing datasets, and RNA sequence motif discovery to gain insight to the mechanisms by which asymmetric abundance patterns arise.


Zdroje

1. Hawkins N, Garriga G. Asymmetric cell division: from A to Z. Genes Dev. 1998;12(23):3625–38. Epub 1998/12/16. 9851969

2. Knoblich JA. Asymmetric cell division during animal development. Nat Rev Mol Cell Biol. 2001;2(1):11–20. Epub 2001/06/20. 11413461

3. Tajbakhsh S, Rocheteau P, Le Roux I. Asymmetric cell divisions and asymmetric cell fates. Annu Rev Cell Dev Biol. 2009;25:671–99. doi: 10.1146/annurev.cellbio.24.110707.175415 19575640

4. Li R. The art of choreographing asymmetric cell division. Dev Cell. 2013;25(5):439–50. doi: 10.1016/j.devcel.2013.05.003 23763946

5. Nagalakshmi U, Waern K, Snyder M. RNA-Seq: a method for comprehensive transcriptome analysis. Curr Protoc Mol Biol. 2010;Chapter 4:Unit 4 11 1–3. Epub 2010/01/14. doi: 10.1002/0471142727.mb0411s89 20069539

6. Tang F, Barbacioru C, Nordman E, Li B, Xu N, Bashkirov VI, et al. RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nat Protoc. 2010;5(3):516–35. Epub 2010/03/06. doi: 10.1038/nprot.2009.236 20203668

7. Gönczy P, Rose LS. Asymmetric cell division and axis formation in the embryo. WormBook. 2005:1–20.

8. Sulston JE, Schierenberg E, White JG, Thomson JN. The embryonic cell lineage of the nematode Caenorhabditis elegans. Developmental biology. 1983;100:64–119. 6684600

9. Bao Z, Zhao Z, Boyle TJ, Murray JI, Waterston RH. Control of cell cycle timing during C. elegans embryogenesis. Dev Biol. 2008;318(1):65–72. doi: 10.1016/j.ydbio.2008.02.054 18430415

10. Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science. 2009;324(5935):1729–32. Epub 2009/05/23. doi: 10.1126/science.1172046 19460965

11. Hird SN, Paulsen JE, Strome S. Segregation of germ granules in living Caenorhabditis elegans embryos: cell-type-specific mechanisms for cytoplasmic localisation. Development. 1996;122(4):1303–12. Epub 1996/04/01. 8620857

12. Wang JT, Seydoux G. Germ cell specification. Adv Exp Med Biol. 2013;757:17–39. doi: 10.1007/978-1-4614-4015-4_2 22872473

13. Seydoux G, Mello CC, Pettitt J, Wood WB, Priess JR, Fire A. Repression of gene expression in the embryonic germ lineage of C. elegans. Nature. 1996;382(6593):713–6. Epub 1996/08/22. 8751441

14. Seydoux G, Dunn MA. Transcriptionally repressed germ cells lack a subpopulation of phosphorylated RNA polymerase II in early embryos of Caenorhabditis elegans and Drosophila melanogaster. Development. 1997;124(11):2191–201. Epub 1997/06/01. 9187145

15. Guven-Ozkan T, Nishi Y, Robertson SM, Lin R. Global transcriptional repression in C. elegans germline precursors by regulated sequestration of TAF-4. Cell. 2008;135(1):149–60. Epub 2008/10/16. doi: 10.1016/j.cell.2008.07.040 18854162

16. Hashimshony T, Wagner F, Sher N, Yanai I. CEL-Seq: Single-Cell RNA-Seq by Multiplexed Linear Amplification. Cell Rep. 2012;2(3):666–73. Epub 2012/09/04. doi: 10.1016/j.celrep.2012.08.003 22939981

17. Sulston JE, Horvitz HR. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol. 1977;56(1):110–56. 838129.

18. Kimble J, Hirsh D. The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev Biol. 1979;70(2):396–417. 478167

19. Batchelder C, Dunn MA, Choy B, Suh Y, Cassie C, Shim EY, et al. Transcriptional repression by the Caenorhabditis elegans germ-line protein PIE-1. Genes Dev. 1999;13(2):202–12. Epub 1999/01/30. 9925644

20. Gonczy P. Mechanisms of asymmetric cell division: flies and worms pave the way. Nat Rev Mol Cell Biol. 2008;9(5):355–66. Epub 2008/04/24. doi: 10.1038/nrm2388 18431399

21. Ghosh D, Seydoux G. Inhibition of transcription by the Caenorhabditis elegans germline protein PIE-1: genetic evidence for distinct mechanisms targeting initiation and elongation. Genetics. 2008;178(1):235–43. Epub 2008/01/19. doi: 10.1534/genetics.107.083212 18202370

22. Seydoux G, Fire A. Soma-germline asymmetry in the distributions of embryonic RNAs in Caenorhabditis elegans. Development (Cambridge, England). 1994;120:2823–34. 7607073

23. Draper BW, Mello CC, Bowerman B, Hardin J, Priess JR. MEX-3 is a KH domain protein that regulates blastomere identity in early C. elegans embryos. Cell. 1996;87:205–16. 8861905

24. Tabara H, Hill RJ, Mello CC, Priess JR, Kohara Y. pos-1 encodes a cytoplasmic zinc-finger protein essential for germline specification in C. elegans. Development (Cambridge, England). 1999;126:1–11.

25. Marinov GK, Williams BA, McCue K, Schroth GP, Gertz J, Myers RM, et al. From single-cell to cell-pool transcriptomes: Stochasticity in gene expression and RNA splicing. Genome Res. 2014;24(3):496–510. doi: 10.1101/gr.161034.113 24299736

26. Eberwine J, Yeh H, Miyashiro K, Cao Y, Nair S, Finnell R, et al. Analysis of gene expression in single live neurons. Proc Natl Acad Sci U S A. 1992;89(7):3010–4. Epub 1992/04/01. 1557406

27. Islam S, Kjallquist U, Moliner A, Zajac P, Fan JB, Lonnerberg P, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 2011;21(7):1160–7. Epub 2011/05/06. doi: 10.1101/gr.110882.110 21543516

28. Goldstein B. Induction of gut in Caenorhabditis elegans embryos. Nature. 1992;357:255–7. 1589023

29. Werts AD, Roh-Johnson M, Goldstein B. Dynamic localization of C. elegans TPR-GoLoco proteins mediates mitotic spindle orientation by extrinsic signaling. Development. 2011. Epub 2011/09/10.

30. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105–11. Epub 2009/03/18. doi: 10.1093/bioinformatics/btp120 19289445

31. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7(3):562–78. Epub 2012/03/03. doi: 10.1038/nprot.2012.016 22383036

32. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106. Epub 2010/10/29. doi: 10.1186/gb-2010-11-10-r106 20979621

33. Anders S. HTSeq: Analysing high-throughput sequencing data with Python. 2013.

34. Tabara H, Motohashi T, Kohara Y. A multi-well version of in situ hybridization on whole mount embryos of Caenorhabditis elegans. Nucleic Acids Res. 1996;24(11):2119–24. Epub 1996/06/01. 8668544

35. Spiró Z, Gönczy P. Polarity-dependent asymmetric distribution and MEX-5/6-mediated translational activation of the era-1 mRNA in C. elegans embryos PLoS ONE. 2015.

36. Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature. 2000;408(6810):325–30. Epub 2000/12/01. 11099033

37. Kamath RS, Martinez-Campos M, Zipperlen P, Fraser AG, Ahringer J. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol. 2001;2(1):RESEARCH0002. Epub 2001/02/24. 11178279

38. Zipperlen P, Fraser AG, Kamath RS, Martinez-Campos M, Ahringer J. Roles for 147 embryonic lethal genes on C. elegans chromosome I identified by RNA interference and video microscopy. EMBO J. 2001;20(15):3984–92. Epub 2001/08/03. 11483502

39. Kamath RS, Ahringer J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods. 2003;30(4):313–21. Epub 2003/06/28. 12828945

40. Simmer F, Moorman C, van der Linden AM, Kuijk E, van den Berghe PV, Kamath RS, et al. Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biol. 2003;1(1):E12. Epub 2003/10/14. 14551910

41. Maeda I, Kohara Y, Yamamoto M, Sugimoto A. Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr Biol. 2001;11(3):171–6. Epub 2001/03/07. 11231151

42. Sonnichsen B, Koski LB, Walsh A, Marschall P, Neumann B, Brehm M, et al. Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature. 2005;434(7032):462–9. Epub 2005/03/26. 15791247

43. Kelley LA, Sternberg MJ. Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc. 2009;4(3):363–71. doi: 10.1038/nprot.2009.2 19247286

44. Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature. 2003;421(6920):231–7. Epub 2003/01/17. 12529635

45. Costa M, Raich W, Agbunag C, Leung B, Hardin J, Priess JR. A putative catenin-cadherin system mediates morphogenesis of the Caenorhabditis elegans embryo. J Cell Biol. 1998;141(1):297–308. 9531567

46. Armenti ST, Nance J. Adherens junctions in C. elegans embryonic morphogenesis. Subcell Biochem. 2012;60:279–99. doi: 10.1007/978-94-007-4186-7_12 22674076

47. Williams-Masson EM, Malik AN, Hardin J. An actin-mediated two-step mechanism is required for ventral enclosure of the C. elegans hypodermis. Development. 1997;124(15):2889–901. Epub 1997/08/01. 9247332

48. Priess JR, Hirsh DI. Caenorhabditis elegans morphogenesis: the role of the cytoskeleton in elongation of the embryo. Dev Biol. 1986;117(1):156–73. 3743895

49. McMahon L, Legouis R, Vonesch JL, Labouesse M. Assembly of C. elegans apical junctions involves positioning and compaction by LET-413 and protein aggregation by the MAGUK protein DLG-1. J Cell Sci. 2001;114(Pt 12):2265–77. 11493666

50. Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics. 2009;10:48. doi: 10.1186/1471-2105-10-48 19192299

51. Supek F, Bosnjak M, Skunca N, Smuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6(7):e21800. Epub 2011/07/27. doi: 10.1371/journal.pone.0021800 21789182

52. D'Agostino I, Merritt C, Chen PL, Seydoux G, Subramaniam K. Translational repression restricts expression of the C. elegans Nanos homolog NOS-2 to the embryonic germline. Dev Biol. 2006;292(1):244–52. Epub 2006/02/28. 16499902

53. Merritt C, Rasoloson D, Ko D, Seydoux G. 3' UTRs are the primary regulators of gene expression in the C. elegans germline. Curr Biol. 2008;18(19):1476–82. Epub 2008/09/27. doi: 10.1016/j.cub.2008.08.013 18818082

54. Evans TC, Hunter CP. Translational control of maternal RNAs. WormBook. 2005:1–11. Epub 2007/12/01.

55. Oldenbroek M, Robertson SM, Guven-Ozkan T, Gore S, Nishi Y, Lin R. Multiple RNA-binding proteins function combinatorially to control the soma-restricted expression pattern of the E3 ligase subunit ZIF-1. Dev Biol. 2012;363(2):388–98. doi: 10.1016/j.ydbio.2012.01.002 22265679

56. Jadhav S, Rana M, Subramaniam K. Multiple maternal proteins coordinate to restrict the translation of C. elegans nanos-2 to primordial germ cells. Development. 2008;135(10):1803–12. Epub 2008/04/18. doi: 10.1242/dev.013656 18417623

57. Hunter CP, Kenyon C. Spatial and temporal controls target pal-1 blastomere-specification activity to a single blastomere lineage in C. elegans embryos. Cell. 1996;87(2):217–26. Epub 1996/10/18. 8861906

58. Ogura K, Kishimoto N, Mitani S, Gengyo-Ando K, Kohara Y. Translational control of maternal glp-1 mRNA by POS-1 and its interacting protein SPN-4 in Caenorhabditis elegans. Development. 2003;130(11):2495–503. Epub 2003/04/19. 12702662

59. Subramaniam K, Seydoux G. nos-1 and nos-2, two genes related to Drosophila nanos, regulate primordial germ cell development and survival in Caenorhabditis elegans. Development. 1999;126(21):4861–71. Epub 1999/10/16. 10518502

60. Baugh LR, Hill AA, Slonim DK, Brown EL, Hunter CP. Composition and dynamics of the Caenorhabditis elegans early embryonic transcriptome. Development. 2003;130(5):889–900. Epub 2003/01/23. 12538516

61. Spencer WC, Zeller G, Watson JD, Henz SR, Watkins KL, McWhirter RD, et al. A spatial and temporal map of C. elegans gene expression. Genome Res. 2011;21(2):325–41. Epub 2010/12/24. doi: 10.1101/gr.114595.110 21177967

62. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;37(Web Server issue):W202–8. doi: 10.1093/nar/gkp335 19458158

63. Farley BM, Pagano JM, Ryder SP. RNA target specificity of the embryonic cell fate determinant POS-1. RNA (New York, NY). 2008;14:2685–97. doi: 10.1261/rna.1256708 18952820

64. Pagano JM, Farley BM, Essien KI, Ryder SP. RNA recognition by the embryonic cell fate determinant and germline totipotency factor MEX-3. Proc Natl Acad Sci U S A. 2009;106(48):20252–7. Epub 2009/11/17. doi: 10.1073/pnas.0907916106 19915141

65. Kawasaki I, Amiri A, Fan Y, Meyer N, Dunkelbarger S, Motohashi T, et al. The PGL family proteins associate with germ granules and function redundantly in Caenorhabditis elegans germline development. Genetics. 2004;167(2):645–61. 15238518

66. Spike CA, Bader J, Reinke V, Strome S. DEPS-1 promotes P-granule assembly and RNA interference in C. elegans germ cells. Development. 2008;135(5):983–93. Epub 2008/02/01. doi: 10.1242/dev.015552 18234720

67. Schauer IE, Wood WB. Early C. elegans embryos are transcriptionally active. Development. 1990;110(4):1303–17. Epub 1990/12/01. 2100265

68. Edgar LG, Wolf N, Wood WB. Early transcription in Caenorhabditis elegans embryos. Development. 1994;120(2):443–51. Epub 1994/02/01. 7512022

69. Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol. 1994;2:28–36. Epub 1994/01/01. 7584402

70. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38(4):576–89. doi: 10.1016/j.molcel.2010.05.004 20513432

71. Altun ZFaH D.H. Epithelial system, hypodermis. In WormAtlas2009.

72. Evans TC, Crittenden SL, Kodoyianni V, Kimble J. Translational control of maternal glp-1 mRNA establishes an asymmetry in the C. elegans embryo. Cell. 1994;77(2):183–94. Epub 1994/04/22. 8168128

73. Wright JE, Gaidatzis D, Senften M, Farley BM, Westhof E, Ryder SP, et al. A quantitative RNA code for mRNA target selection by the germline fate determinant GLD-1. EMBO J. 2011;30(3):533–45. Epub 2010/12/21. doi: 10.1038/emboj.2010.334 21169991

74. Farley BM, Ryder SP. POS-1 and GLD-1 repress glp-1 translation through a conserved binding-site cluster. Mol Biol Cell. 2012;23(23):4473–83. doi: 10.1091/mbc.E12-03-0216 23034181

75. Amiri A, Keiper BD, Kawasaki I, Fan Y, Kohara Y, Rhoads RE, et al. An isoform of eIF4E is a component of germ granules and is required for spermatogenesis in C. elegans. Development. 2001;128(20):3899–912. 11641215

76. Long RM, Singer RH, Meng X, Gonzalez I, Nasmyth K, Jansen RP. Mating type switching in yeast controlled by asymmetric localization of ASH1 mRNA. Science. 1997;277(5324):383–7. 9219698

77. Takizawa PA, Sil A, Swedlow JR, Herskowitz I, Vale RD. Actin-dependent localization of an RNA encoding a cell-fate determinant in yeast. Nature. 1997;389(6646):90–3. 9288973

78. Becalska AN, Gavis ER. Lighting up mRNA localization in Drosophila oogenesis. Development. 2009;136(15):2493–503. doi: 10.1242/dev.032391 19592573

79. Lasko P. mRNA localization and translational control in Drosophila oogenesis. Cold Spring Harb Perspect Biol. 2012;4(10). Epub 2012/08/07. doi: 10.1101/cshperspect.a013300 23028121

80. Marston DJ, Goldstein B. Symmetry breaking in C. elegans: another gift from the sperm. Dev Cell. 2006;11(3):273–4. Epub 2006/09/05. 16950117

81. Jenkins N, Saam JR, Mango SE. CYK-4/GAP provides a localized cue to initiate anteroposterior polarity upon fertilization. Science. 2006;313(5791):1298–301. 16873611

82. Kemphues KJ, Priess JR, Morton DG, Cheng NS. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell. 1988;52(3):311–20. Epub 1988/02/12. 3345562.

83. Cowan CR, Hyman AA. Asymmetric cell division in C. elegans: cortical polarity and spindle positioning. Annu Rev Cell Dev Biol. 2004;20:427–53. Epub 2004/10/12. 15473847

84. Munro E, Nance J, Priess JR. Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior-posterior polarity in the early C. elegans embryo. Dev Cell. 2004;7(3):413–24. Epub 2004/09/15. 15363415

85. Cowan CR, Hyman AA. Acto-myosin reorganization and PAR polarity in C. elegans. Development. 2007;134(6):1035–43. Epub 2007/02/09. 17287245

86. Nance J, Zallen JA. Elaborating polarity: PAR proteins and the cytoskeleton. Development. 2011;138(5):799–809. Epub 2011/02/10. doi: 10.1242/dev.053538 21303844

87. Moeendarbary E, Valon L, Fritzsche M, Harris AR, Moulding DA, Thrasher AJ, et al. The cytoplasm of living cells behaves as a poroelastic material. Nat Mater. 2013;12(3):253–61. doi: 10.1038/nmat3517 23291707

88. Stoeckius M, Grün D, Kirchner M, Ayoub S, Torti F, Piano F, et al. Global characterization of the oocyte-to-embryo transition in Caenorhabditis elegans uncovers a novel mRNA clearance mechanism. EMBO J. 2014.

89. Stiernagle T. Maintenance of C. elegans. WormBook. 2006:1–11.

90. Edgar LG, Goldstein B. Culture and manipulation of embryonic cells. Methods Cell Biol. 2012;107:151–75. doi: 10.1016/B978-0-12-394620-1.00005-9 22226523

91. Lassmann T, Hayashizaki Y, Daub CO. TagDust—a program to eliminate artifacts from next generation sequencing data. Bioinformatics. 2009;25(21):2839–40. doi: 10.1093/bioinformatics/btp527 19737799

92. Team RC. R: A language and environment for statistical computing. In: Computing RFfS, editor. 2013. doi: 10.3758/s13428-013-0330-5 23519455

93. Thierry-Mieg D, Thierry-Mieg J. AceView: a comprehensive cDNA-supported gene and transcripts annotation. Genome Biol. 2006;7 Suppl 1:S12.1–4.

94. Shaffer SM, Wu MT, Levesque MJ, Raj A. Turbo FISH: a method for rapid single molecule RNA FISH. PLoS One. 2013;8(9):e75120. doi: 10.1371/journal.pone.0075120 24066168

95. Ji N, van Oudenaarden A. Single molecule fluorescent in situ hybridization (smFISH) of C. elegans worms and embryos. WormBook. 2012:1–16. doi: 10.1895/wormbook.1.154.1 23255345

96. Sawyer JM, Glass S, Li T, Shemer G, White ND, Starostina NG, et al. Overcoming redundancy: an RNAi enhancer screen for morphogenesis genes in Caenorhabditis elegans. Genetics. 2011;188(3):549–64. Epub 2011/04/30. doi: 10.1534/genetics.111.129486 21527776

97. Dudley NR, Labbé JC, Goldstein B. Using RNA interference to identify genes required for RNA interference. Proc Natl Acad Sci U S A. 2002;99(7):4191–6. 11904378

98. Dickinson DJ, Ward JD, Reiner DJ, Goldstein B. Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods. 2013;10(10):1028–34. doi: 10.1038/nmeth.2641 23995389

99. Frøkjaer-Jensen C, Davis MW, Hopkins CE, Newman BJ, Thummel JM, Olesen SP, et al. Single-copy insertion of transgenes in Caenorhabditis elegans. Nat Genet. 2008;40(11):1375–83. doi: 10.1038/ng.248 18953339

100. Mangone M, Manoharan AP, Thierry-Mieg D, Thierry-Mieg J, Han T, Mackowiak SD, et al. The landscape of C. elegans 3'UTRs. Science. 2010;329(5990):432–5. doi: 10.1126/science.1191244 20522740

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#