#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

MCM8 Is Required for a Pathway of Meiotic Double-Strand Break Repair Independent of DMC1 in


Mini-chromosome maintenance (MCM) 2–9 proteins are related helicases. The first six, MCM2–7, are essential for DNA replication in all eukaryotes. In contrast, MCM8 is not always conserved in eukaryotes but is present in Arabidopsis thaliana. MCM8 is required for 95% of meiotic crossovers (COs) in Drosophila and is essential for meiosis completion in mouse, prompting us to study this gene in Arabidopsis meiosis. Three allelic Atmcm8 mutants showed a limited level of chromosome fragmentation at meiosis. This defect was dependent on programmed meiotic double-strand break (DSB) formation, revealing a role for AtMCM8 in meiotic DSB repair. In contrast, CO formation was not affected, as shown both genetically and cytologically. The Atmcm8 DSB repair defect was greatly amplified in the absence of the DMC1 recombinase or in mutants affected in DMC1 dynamics (sds, asy1). The Atmcm8 fragmentation defect was also amplified in plants heterozygous for a mutation in either recombinase, DMC1 or RAD51. Finally, in the context of absence of homologous chromosomes (i.e. haploid), mutation of AtMCM8 also provoked a low level of chromosome fragmentation. This fragmentation was amplified by the absence of DMC1 showing that both MCM8 and DMC1 can promote repair on the sister chromatid in Arabidopsis haploids. Altogether, this establishes a role for AtMCM8 in meiotic DSB repair, in parallel to DMC1. We propose that MCM8 is involved with RAD51 in a backup pathway that repairs meiotic DSB without giving CO when the major pathway, which relies on DMC1, fails.


Vyšlo v časopise: MCM8 Is Required for a Pathway of Meiotic Double-Strand Break Repair Independent of DMC1 in. PLoS Genet 9(1): e32767. doi:10.1371/journal.pgen.1003165
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003165

Souhrn

Mini-chromosome maintenance (MCM) 2–9 proteins are related helicases. The first six, MCM2–7, are essential for DNA replication in all eukaryotes. In contrast, MCM8 is not always conserved in eukaryotes but is present in Arabidopsis thaliana. MCM8 is required for 95% of meiotic crossovers (COs) in Drosophila and is essential for meiosis completion in mouse, prompting us to study this gene in Arabidopsis meiosis. Three allelic Atmcm8 mutants showed a limited level of chromosome fragmentation at meiosis. This defect was dependent on programmed meiotic double-strand break (DSB) formation, revealing a role for AtMCM8 in meiotic DSB repair. In contrast, CO formation was not affected, as shown both genetically and cytologically. The Atmcm8 DSB repair defect was greatly amplified in the absence of the DMC1 recombinase or in mutants affected in DMC1 dynamics (sds, asy1). The Atmcm8 fragmentation defect was also amplified in plants heterozygous for a mutation in either recombinase, DMC1 or RAD51. Finally, in the context of absence of homologous chromosomes (i.e. haploid), mutation of AtMCM8 also provoked a low level of chromosome fragmentation. This fragmentation was amplified by the absence of DMC1 showing that both MCM8 and DMC1 can promote repair on the sister chromatid in Arabidopsis haploids. Altogether, this establishes a role for AtMCM8 in meiotic DSB repair, in parallel to DMC1. We propose that MCM8 is involved with RAD51 in a backup pathway that repairs meiotic DSB without giving CO when the major pathway, which relies on DMC1, fails.


Zdroje

1. CromieGa, SmithGR (2007) Branching out: meiotic recombination and its regulation. Trends in cell biology 17: 448–455 doi:10.1016/j.tcb.2007.07.007.

2. KeeneyS (2008) Spo11 and the formation of DNA double-strand breaks in meiosis. Recombination and meiosis 81–123 doi:10.1007/7050.

3. De MuytA, VezonD, GendrotG, GalloisJ-L, StevensR, et al. (2007) AtPRD1 is required for meiotic double strand break formation in Arabidopsis thaliana. The EMBO journal 26: 4126–4137 doi:10.1038/sj.emboj.7601815.

4. KagawaW, KurumizakaH (2010) From meiosis to postmeiotic events: uncovering the molecular roles of the meiosis-specific recombinase Dmc1. The FEBS journal 277: 590–598 doi:10.1111/j.1742-4658.2009.07503.x.

5. CloudV, ChanY-L, GrubbJ, BudkeB, BishopDK (2012) Rad51 Is an Accessory Factor for Dmc1-Mediated Joint Molecule Formation During Meiosis. Science 337: 1222–1225 doi:10.1126/science.1219379.

6. LiW, ChenC, Markmann-MulischU, TimofejevaL, SchmelzerE, et al. (2004) The Arabidopsis AtRAD51 gene is dispensable for vegetative development but required for meiosis. Proceedings of the National Academy of Sciences of the United States of America 101: 10596–10601 doi:10.1073/pnas.0404110101.

7. VignardJ, SiwiecT, ChelyshevaL, VrielynckN, GonordF, et al. (2007) The interplay of RecA-related proteins and the MND1-HOP2 complex during meiosis in Arabidopsis thaliana. PLoS Genet 3: e176 doi:10.1371/journal.pgen.0030176.

8. CouteauF, BelzileF, HorlowC, GrandjeanO, VezonD, et al. (1999) Random chromosome segregation without meiotic arrest in both male and female meiocytes of a dmc1 mutant of Arabidopsis. The Plant cell 11: 1623–1634.

9. Kurzbauer M-T, Uanschou C, Chen D, Schlögelhofer P (2012) The Recombinases DMC1 and RAD51 Are Functionally and Spatially Separated during Meiosis in Arabidopsis. The Plant cell: 1–14. doi:10.1105/tpc.112.098459.

10. CarylAPP, ArmstrongSJ, JonesGH, FranklinFCH (2000) A homologue of the yeast HOP1 gene is inactivated in the Arabidopsis meiotic mutant asy1. Chromosoma 109: 62–71.

11. AzumiY, LiuD, ZhaoD, LiW, WangG, et al. (2002) Homolog interaction during meiotic prophase I in Arabidopsis requires the SOLO DANCERS gene encoding a novel cyclin-like protein. The EMBO journal 21: 3081–3095 doi:10.1093/emboj/cdf285.

12. De MuytA, PereiraL, VezonD, ChelyshevaL, GendrotG, et al. (2009) A high throughput genetic screen identifies new early meiotic recombination functions in Arabidopsis thaliana. PLoS Genet 5: e1000654 doi:10.1371/journal.pgen.1000654.

13. Sanchez-MoranE, SantosJL, JonesGH, FranklinFCH (2007) ASY1 mediates AtDMC1-dependent interhomolog recombination during meiosis in Arabidopsis. Genes & development 21: 2220–2233 doi:10.1101/gad.439007.

14. OsmanK, HigginsJD, Sanchez-MoranE, ArmstrongSJ, FranklinFCH (2011) Pathways to meiotic recombination in Arabidopsis thaliana. The New phytologist 190: 523–544 doi:10.1111/j.1469-8137.2011.03665.x.

15. HarrisonCJ, AlveyE, HendersonIR (2010) Meiosis in flowering plants and other green organisms. Journal of experimental botany 61: 2863–2875 doi:10.1093/jxb/erq191.

16. LynnA, SoucekR, BörnerGV (2007) ZMM proteins during meiosis: crossover artists at work. Chromosome Research 15: 591–605 doi:10.1007/s10577-007-1150-1.

17. MézardC, VignardJ, DrouaudJ, MercierR (2007) The road to crossovers: plants have their say. Trends in genetics: TIG 23: 91–99 doi:10.1016/j.tig.2006.12.007.

18. MaioranoD, LutzmannM, MéchaliM (2006) MCM proteins and DNA replication. Current opinion in cell biology 18: 130–136 doi:10.1016/j.ceb.2006.02.006.

19. LiuY, RichardsTa, AvesSJ (2009) Ancient diversification of eukaryotic MCM DNA replication proteins. BMC evolutionary biology 9: 60 doi:10.1186/1471-2148-9-60.

20. MaioranoD, CuvierO, DanisE, MéchaliM (2005) MCM8 is an MCM2-7-related protein that functions as a DNA helicase during replication elongation and not initiation. Cell 120: 315–328 doi:10.1016/j.cell.2004.12.010.

21. VolkeningM, HoffmannI (2005) Involvement of Human MCM8 in Prereplication Complex Assembly by Recruiting hcdc6 to Chromatin Involvement of Human MCM8 in Prereplication Complex Assembly by Recruiting hcdc6 to Chromatin. 25 doi:10.1128/MCB.25.4.1560.

22. LutzmannM, GreyC, TraverS, GanierO, Maya-MendozaA, et al. (2012) MCM8- and MCM9-Deficient Mice Reveal Gametogenesis Defects and Genome Instability Due to Impaired Homologous Recombination. Molecular cell 47: 523–534 doi:10.1016/j.molcel.2012.05.048.

23. NishimuraK, IshiaiM, HorikawaK, FukagawaT, TakataM, et al. (2012) Mcm8 and Mcm9 Form a Complex that Functions in Homologous Recombination Repair Induced by DNA Interstrand Crosslinks. Molecular cell 47: 511–522 doi:10.1016/j.molcel.2012.05.047.

24. BlantonHL, RadfordSJ, McMahanS, KearneyHM, IbrahimJG, et al. (2005) REC, Drosophila MCM8, drives formation of meiotic crossovers. PLoS Genet 1: e40 doi:10.1371/journal.pgen.0010040.

25. PageSL, HawleyRS (2004) The genetics and molecular biology of the synaptonemal complex. Annual review of cell and developmental biology 20: 525–558 doi:10.1146/annurev.cellbio.19.111301.155141.

26. ArmstrongSJ, CarylAPP, JonesGH, FranklinFCH (2002) Asy1, a protein required for meiotic chromosome synapsis, localizes to axis-associated chromatin in Arabidopsis and Brassica. Journal of Cell Science 115: 3645–3655 doi:10.1242/jcs.00048.

27. HigginsJD, Sanchez-MoranE, ArmstrongSJ, JonesGH, FranklinFCH (2005) The Arabidopsis synaptonemal complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over. Genes & development 19: 2488–2500 doi:10.1101/gad.354705.

28. StaceyNJ, KuromoriT, AzumiY, RobertsG, BreuerC, et al. (2006) Arabidopsis SPO11-2 functions with SPO11-1 in meiotic recombination. The Plant Journal 48: 206–216 doi:10.1111/j.1365-313X.2006.02867.x.

29. ChelyshevaL, GrandontL, VrielynckN, le GuinS, MercierR, et al. (2010) An easy protocol for studying chromatin and recombination protein dynamics during Arabidopsis thaliana meiosis: immunodetection of cohesins, histones and MLH1. Cytogenetic and genome research 129: 143–153 doi:10.1159/000314096.

30. JacksonN, Sanchez-MoranE, BucklingE, ArmstrongSJ, JonesGH, et al. (2006) Reduced meiotic crossovers and delayed prophase I progression in AtMLH3-deficient Arabidopsis. The EMBO journal 25: 1315–1323 doi:10.1038/sj.emboj.7600992.

31. BerchowitzLE, CopenhaverGP (2008) Fluorescent Arabidopsis tetrads: a visual assay for quickly developing large crossover and crossover interference data sets. Nature protocols 3: 41–50 doi:10.1038/nprot.2007.491.

32. SekelskyJJ, McKimKS, ChinGM, HawleyRS (1995) The Drosophila meiotic recombination gene mei-9 encodes a homologue of the yeast excision repair protein Rad1. Genetics 141: 619–627.

33. LiuZ, HossainGS, Islas-OsunaMA, MitchellDL, MountDW (2000) Repair of UV damage in plants by nucleotide excision repair: Arabidopsis UVH1 DNA repair gene is a homolog of Saccharomyces cerevisiae Rad1. The Plant journal: for cell and molecular biology 21: 519–528.

34. GallegoF, FleckO, LiA, WyrzykowskaJ, TinlandB (2000) AtRAD1, a plant homologue of human and yeast nucleotide excision repair endonucleases, is involved in dark repair of UV damages and recombination. The Plant journal: for cell and molecular biology 21: 507–518.

35. DubestS, GallegoME, WhiteCI (2002) Role of the AtRad1p endonuclease in homologous recombination in plants. EMBO reports 3: 1049–1054 doi:10.1093/embo-reports/kvf211.

36. RaviM, ChanSWL (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464: 615–618 doi:10.1038/nature08842.

37. Sanchez-moranE, SantosJL, JonesGH, FranklinFCH (2007) ASY1 mediates AtDMC1-dependent interhomolog recombination during meiosis in Arabidopsis. Genes & Development 1: 2220–2233 doi:10.1101/gad.439007.2002.

38. SheridanS, BishopDK (2006) Red-Hed regulation: recombinase Rad51, though capable of playing the leading role, may be relegated to supporting Dmc1 in budding yeast meiosis. Genes & development 20: 1685–1691 doi:10.1101/gad.1447606.

39. TsubouchiH, RoederGS (2006) Budding yeast Hed1 down-regulates the mitotic recombination machinery when meiotic recombination is impaired. Genes & development 20: 1766–1775 doi:10.1101/gad.1422506.

40. NiuH, WanL, BusyginaV, KwonY, AllenJa, et al. (2009) Regulation of meiotic recombination via Mek1-mediated Rad54 phosphorylation. Molecular cell 36: 393–404 doi:10.1016/j.molcel.2009.09.029.

41. ShinoharaA, GasiorS, OgawaT, KlecknerN, BishopDK (1997) Saccharomyces cerevisiae recA homologues RAD51 and DMC1 have both distinct and overlapping roles in meiotic recombination. Genes to cells: devoted to molecular & cellular mechanisms 2: 615–629.

42. NiuH, LiX, JobE, ParkC, MoazedD, et al. (2007) Mek1 kinase is regulated to suppress double-strand break repair between sister chromatids during budding yeast meiosis. Molecular and cellular biology 27: 5456–5467 doi:10.1128/MCB.00416-07.

43. ChelyshevaL, GendrotG, VezonD, DoutriauxM-P, MercierR, et al. (2007) Zip4/Spo22 is required for class I CO formation but not for synapsis completion in Arabidopsis thaliana. PLoS Genet 3: e83 doi:10.1371/journal.pgen.0030083.

44. Schwachaa, KlecknerN (1997) Interhomolog bias during meiotic recombination: meiotic functions promote a highly differentiated interhomolog-only pathway. Cell 90: 1123–1135.

45. YoudsJL, BoultonSJ (2011) The choice in meiosis - defining the factors that influence crossover or non-crossover formation. Journal of cell science 124: 501–513 doi:10.1242/jcs.074427.

46. AlonsoJM, StepanovaAN, LeisseTJ, KimCJ, ChenH, et al. (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science (New York, NY) 301: 653–657 doi:10.1126/science.1086391.

47. HartungF, Wurz-WildersinnR, FuchsJ, SchubertI, SuerS, et al. (2007) The catalytically active tyrosine residues of both SPO11-1 and SPO11-2 are required for meiotic double-strand break induction in Arabidopsis. The Plant cell 19: 3090–3099 doi:10.1105/tpc.107.054817.

48. PradilloM, LópezE, LinaceroR, RomeroC, CuñadoN, et al. (2012) Together yes, but not coupled: new insights into the roles of RAD51 and DMC1 in plant meiotic recombination. The Plant journal: for cell and molecular biology 69: 921–933 doi:10.1111/j.1365-313X.2011.04845.x.

49. Higgins JD, Armstrong SJ, Franklin FCH, Jones GH (2004) The Arabidopsis MutS homolog AtMSH4 functions at an early step in recombination: evidence for two classes of recombination in Arabidopsis. Genes & Development: 2557–2570. doi:10.1101/gad.317504.eukaryote.

50. HigginsJD, BucklingEF, FranklinFCH, JonesGH (2008) Expression and functional analysis of AtMUS81 in Arabidopsis meiosis reveals a role in the second pathway of crossing-over. The Plant Journal 54: 152–162 doi:10.1111/j.1365-313X.2008.03403.x.

51. BerchowitzLE, FrancisKE, BeyAL, CopenhaverGP (2007) The role of AtMUS81 in interference-insensitive crossovers in A. thaliana. PLoS Genet 3: e132 doi:10.1371/journal.pgen.0030132.

52. MarimuthuMPa, JolivetS, RaviM, PereiraL, DavdaJN, et al. (2011) Synthetic clonal reproduction through seeds. Science 331: 876 doi:10.1126/science.1199682.

53. MacaisneN, VignardJ, MercierR (2011) SHOC1 and PTD form an XPF-ERCC1-like complex that is required for formation of class I crossovers. Journal of cell science 124: 2687–2691 doi:10.1242/jcs.088229.

54. AlexanderM (1969) Differential staining of aborted and nonaborted pollen. Biotechnic & Histochemistry 44: 117–122.

55. MotamayorJ, VezonD, BajonC (2000) Switch (swi1), an Arabidopsis thaliana mutant affected in the female meiotic switch. Sexual Plant Reproduction 12: 209–218.

56. ArmstrongSJ (2002) Asy1, a protein required for meiotic chromosome synapsis, localizes to axis-associated chromatin in Arabidopsis and Brassica. Journal of Cell Science 115: 3645–3655 doi:10.1242/jcs.00048.

57. MalkovaA, SwansonJ, GermanM, McCuskerJH, HousworthEa, et al. (2004) Gene conversion and crossing over along the 405-kb left arm of Saccharomyces cerevisiae chromosome VII. Genetics 168: 49–63 doi:10.1534/genetics.104.027961.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#