-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
A Newly Uncovered Group of Distantly Related Lysine Methyltransferases Preferentially Interact with Molecular Chaperones to Regulate Their Activity
Methylation is a post-translational modification that can affect numerous features of proteins, notably cellular localization, turnover, activity, and molecular interactions. Recent genome-wide analyses have considerably extended the list of human genes encoding putative methyltransferases. Studies on protein methyltransferases have revealed that the regulatory function of methylation is not limited to epigenetics, with many non-histone substrates now being discovered. We present here our findings on a novel family of distantly related putative methyltransferases. Affinity purification coupled to mass spectrometry shows a marked preference for these proteins to associate with various chaperones. Based on the spectral data, we were able to identify methylation sites in substrates, notably trimethylation of K135 of KIN/Kin17, K561 of HSPA8/Hsc70 as well as corresponding lysine residues in other Hsp70 isoforms, and K315 of VCP/p97. All modification sites were subsequently confirmed in vitro. In the case of VCP, methylation by METTL21D was stimulated by the addition of the UBX cofactor ASPSCR1, which we show directly interacts with the methyltransferase. This stimulatory effect was lost when we used VCP mutants (R155H, R159G, and R191Q) known to cause Inclusion Body Myopathy with Paget's disease of bone and Fronto-temporal Dementia (IBMPFD) and/or familial Amyotrophic Lateral Sclerosis (ALS). Lysine 315 falls in proximity to the Walker B motif of VCP's first ATPase/D1 domain. Our results indicate that methylation of this site negatively impacts its ATPase activity. Overall, this report uncovers a new role for protein methylation as a regulatory pathway for molecular chaperones and defines a novel regulatory mechanism for the chaperone VCP, whose deregulation is causative of degenerative neuromuscular diseases.
Vyšlo v časopise: A Newly Uncovered Group of Distantly Related Lysine Methyltransferases Preferentially Interact with Molecular Chaperones to Regulate Their Activity. PLoS Genet 9(1): e32767. doi:10.1371/journal.pgen.1003210
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003210Souhrn
Methylation is a post-translational modification that can affect numerous features of proteins, notably cellular localization, turnover, activity, and molecular interactions. Recent genome-wide analyses have considerably extended the list of human genes encoding putative methyltransferases. Studies on protein methyltransferases have revealed that the regulatory function of methylation is not limited to epigenetics, with many non-histone substrates now being discovered. We present here our findings on a novel family of distantly related putative methyltransferases. Affinity purification coupled to mass spectrometry shows a marked preference for these proteins to associate with various chaperones. Based on the spectral data, we were able to identify methylation sites in substrates, notably trimethylation of K135 of KIN/Kin17, K561 of HSPA8/Hsc70 as well as corresponding lysine residues in other Hsp70 isoforms, and K315 of VCP/p97. All modification sites were subsequently confirmed in vitro. In the case of VCP, methylation by METTL21D was stimulated by the addition of the UBX cofactor ASPSCR1, which we show directly interacts with the methyltransferase. This stimulatory effect was lost when we used VCP mutants (R155H, R159G, and R191Q) known to cause Inclusion Body Myopathy with Paget's disease of bone and Fronto-temporal Dementia (IBMPFD) and/or familial Amyotrophic Lateral Sclerosis (ALS). Lysine 315 falls in proximity to the Walker B motif of VCP's first ATPase/D1 domain. Our results indicate that methylation of this site negatively impacts its ATPase activity. Overall, this report uncovers a new role for protein methylation as a regulatory pathway for molecular chaperones and defines a novel regulatory mechanism for the chaperone VCP, whose deregulation is causative of degenerative neuromuscular diseases.
Zdroje
1. MartinJL, McMillanFM (2002) SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Curr Opin Struct Biol 12 : 783–793.
2. PetrossianTC, ClarkeSG (2011) Uncovering the human methyltransferasome. Mol Cell Proteomics 10: M110 000976.
3. SchubertHL, BlumenthalRM, ChengX (2003) Many paths to methyltransfer: a chronicle of convergence. Trends Biochem Sci 28 : 329–335.
4. IshizawaT, NozakiY, UedaT, TakeuchiN (2008) The human mitochondrial translation release factor HMRF1L is methylated in the GGQ motif by the methyltransferase HMPrmC. Biochem Biophys Res Commun 373 : 99–103.
5. KlotzAV, LearyJA, GlazerAN (1986) Post-translational methylation of asparaginyl residues. Identification of beta-71 gamma-N-methylasparagine in allophycocyanin. J Biol Chem 261 : 15891–15894.
6. WebbKJ, Zurita-LopezCI, Al-HadidQ, LaganowskyA, YoungBD, et al. (2010) A novel 3-methylhistidine modification of yeast ribosomal protein Rpl3 is dependent upon the YIL110W methyltransferase. J Biol Chem 285 : 37598–37606.
7. PeggAE (1990) Mammalian O6-alkylguanine-DNA alkyltransferase: regulation and importance in response to alkylating carcinogenic and therapeutic agents. Cancer Res 50 : 6119–6129.
8. SprungR, ChenY, ZhangK, ChengD, ZhangT, et al. (2008) Identification and validation of eukaryotic aspartate and glutamate methylation in proteins. J Proteome Res 7 : 1001–1006.
9. ClarkeS (1992) Protein isoprenylation and methylation at carboxyl-terminal cysteine residues. Annu Rev Biochem 61 : 355–386.
10. TooleyCE, PetkowskiJJ, Muratore-SchroederTL, BalsbaughJL, ShabanowitzJ, et al. (2010) NRMT is an alpha-N-methyltransferase that methylates RCC1 and retinoblastoma protein. Nature 466 : 1125–1128.
11. WuJ, TolstykhT, LeeJ, BoydK, StockJB, et al. (2000) Carboxyl methylation of the phosphoprotein phosphatase 2A catalytic subunit promotes its functional association with regulatory subunits in vivo. Embo J 19 : 5672–5681.
12. FengQ, WangH, NgHH, Erdjument-BromageH, TempstP, et al. (2002) Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol 12 : 1052–1058.
13. MartinC, ZhangY (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6 : 838–849.
14. VolkelP, AngrandPO (2007) The control of histone lysine methylation in epigenetic regulation. Biochimie 89 : 1–20.
15. BarskiA, CuddapahS, CuiK, RohTY, SchonesDE, et al. (2007) High-resolution profiling of histone methylations in the human genome. Cell 129 : 823–837.
16. KochCM, AndrewsRM, FlicekP, DillonSC, KaraozU, et al. (2007) The landscape of histone modifications across 1% of the human genome in five human cell lines. Genome Res 17 : 691–707.
17. RosenfeldJA, WangZ, SchonesDE, ZhaoK, DeSalleR, et al. (2009) Determination of enriched histone modifications in non-genic portions of the human genome. BMC Genomics 10 : 143.
18. ChuikovS, KurashJK, WilsonJR, XiaoB, JustinN, et al. (2004) Regulation of p53 activity through lysine methylation. Nature 432 : 353–360.
19. HoutzRL, StultsJT, MulliganRM, TolbertNE (1989) Post-translational modifications in the large subunit of ribulose bisphosphate carboxylase/oxygenase. Proc Natl Acad Sci U S A 86 : 1855–1859.
20. HuangJ, Perez-BurgosL, PlacekBJ, SenguptaR, RichterM, et al. (2006) Repression of p53 activity by Smyd2-mediated methylation. Nature 444 : 629–632.
21. KruiswijkT, KunstA, PlantaRJ, MagerWH (1978) Modification of yeast ribosomal proteins. Methylation. Biochem J 175 : 221–225.
22. LeeSW, BergerSJ, MartinovicS, Pasa-TolicL, AndersonGA, et al. (2002) Direct mass spectrometric analysis of intact proteins of the yeast large ribosomal subunit using capillary LC/FTICR. Proc Natl Acad Sci U S A 99 : 5942–5947.
23. LevyD, KuoAJ, ChangY, SchaeferU, KitsonC, et al. (2011) Lysine methylation of the NF-kappaB subunit RelA by SETD6 couples activity of the histone methyltransferase GLP at chromatin to tonic repression of NF-kappaB signaling. Nat Immunol 12 : 29–36.
24. LhoestJ, LobetY, CostersE, ColsonC (1984) Methylated proteins and amino acids in the ribosomes of Saccharomyces cerevisiae. Eur J Biochem 141 : 585–590.
25. MorinoH, KawamotoT, MiyakeM, KakimotoY (1987) Purification and properties of calmodulin-lysine N-methyltransferase from rat brain cytosol. J Neurochem 48 : 1201–1208.
26. PolevodaB, MartzenMR, DasB, PhizickyEM, ShermanF (2000) Cytochrome c methyltransferase, Ctm1p, of yeast. J Biol Chem 275 : 20508–20513.
27. YangXD, HuangB, LiM, LambA, KelleherNL, et al. (2009) Negative regulation of NF-kappaB action by Set9-mediated lysine methylation of the RelA subunit. Embo J 28 : 1055–1066.
28. CloutierP, Al-KhouryR, Lavallee-AdamM, FaubertD, JiangH, et al. (2009) High-resolution mapping of the protein interaction network for the human transcription machinery and affinity purification of RNA polymerase II-associated complexes. Methods 48 : 381–386.
29. CloutierP, CoulombeB (2010) New insights into the biogenesis of nuclear RNA polymerases? Biochem Cell Biol 88 : 211–221.
30. CojocaruM, BouchardA, CloutierP, CooperJJ, VarzavandK, et al. (2011) Transcription factor IIS cooperates with the E3 ligase UBR5 to ubiquitinate the CDK9 subunit of the positive transcription elongation factor B. J Biol Chem 286 : 5012–5022.
31. CoulombeB, BlanchetteM, JeronimoC (2008) Steps towards a repertoire of comprehensive maps of human protein interaction networks: the Human Proteotheque Initiative (HuPI). Biochem Cell Biol 86 : 149–156.
32. ForgetD, LacombeAA, CloutierP, Al-KhouryR, BouchardA, et al. (2010) The protein interaction network of the human transcription machinery reveals a role for the conserved GTPase RPAP4/GPN1 and microtubule assembly in nuclear import and biogenesis of RNA polymerase II. Mol Cell Proteomics 9 : 2827–2839.
33. JeronimoC, ForgetD, BouchardA, LiQ, ChuaG, et al. (2007) Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme. Mol Cell 27 : 262–274.
34. JeronimoC, LangelierMF, ZeghoufM, CojocaruM, BergeronD, et al. (2004) RPAP1, a novel human RNA polymerase II-associated protein affinity purified with recombinant wild-type and mutated polymerase subunits. Mol Cell Biol 24 : 7043–7058.
35. KruegerBJ, JeronimoC, RoyBB, BouchardA, BarrandonC, et al. (2008) LARP7 is a stable component of the 7SK snRNP while P-TEFb, HEXIM1 and hnRNP A1 are reversibly associated. Nucleic Acids Res 36 : 2219–2229.
36. BaysNW, WilhovskySK, GoradiaA, Hodgkiss-HarlowK, HamptonRY (2001) HRD4/NPL4 is required for the proteasomal processing of ubiquitinated ER proteins. Mol Biol Cell 12 : 4114–4128.
37. BraunS, MatuschewskiK, RapeM, ThomsS, JentschS (2002) Role of the ubiquitin-selective CDC48(UFD1/NPL4)chaperone (segregase) in ERAD of OLE1 and other substrates. Embo J 21 : 615–621.
38. JaroschE, TaxisC, VolkweinC, BordalloJ, FinleyD, et al. (2002) Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nat Cell Biol 4 : 134–139.
39. RabinovichE, KeremA, FrohlichKU, DiamantN, Bar-NunS (2002) AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol Cell Biol 22 : 626–634.
40. YeY, MeyerHH, RapoportTA (2001) The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414 : 652–656.
41. IoukTL, AitchisonJD, MaguireS, WozniakRW (2001) Rrb1p, a yeast nuclear WD-repeat protein involved in the regulation of ribosome biosynthesis. Mol Cell Biol 21 : 1260–1271.
42. MagnaniR, DirkLM, TrievelRC, HoutzRL (2010) Calmodulin methyltransferase is an evolutionarily conserved enzyme that trimethylates Lys-115 in calmodulin. Nat Commun 1 : 43.
43. ZhangK, YauPM, ChandrasekharB, NewR, KondratR, et al. (2004) Differentiation between peptides containing acetylated or tri-methylated lysines by mass spectrometry: an application for determining lysine 9 acetylation and methylation of histone H3. Proteomics 4 : 1–10.
44. MeisterG, EggertC, BuhlerD, BrahmsH, KambachC, et al. (2001) Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln. Curr Biol 11 : 1990–1994.
45. AlexandruG, GraumannJ, SmithGT, KolawaNJ, FangR, et al. (2008) UBXD7 binds multiple ubiquitin ligases and implicates p97 in HIF1alpha turnover. Cell 134 : 804–816.
46. OrmeCM, BoganJS (2012) The ubiquitin regulatory X (UBX) domain-containing protein TUG regulates the p97 ATPase and resides at the endoplasmic reticulum-golgi intermediate compartment. J Biol Chem 287 : 6679–6692.
47. JohnsonJO, MandrioliJ, BenatarM, AbramzonY, Van DeerlinVM, et al. (2010) Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68 : 857–864.
48. WattsGD, WymerJ, KovachMJ, MehtaSG, MummS, et al. (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet 36 : 377–381.
49. HanzelmannP, SchindelinH (2011) The structural and functional basis of the p97/valosin-containing protein (VCP)-interacting motif (VIM): mutually exclusive binding of cofactors to the N-terminal domain of p97. J Biol Chem 286 : 38679–38690.
50. SchuberthC, BuchbergerA (2008) UBX domain proteins: major regulators of the AAA ATPase Cdc48/p97. Cell Mol Life Sci 65 : 2360–2371.
51. YeungHO, KloppsteckP, NiwaH, IsaacsonRL, MatthewsS, et al. (2008) Insights into adaptor binding to the AAA protein p97. Biochem Soc Trans 36 : 62–67.
52. WangQ, SongC, YangX, LiCC (2003) D1 ring is stable and nucleotide-independent, whereas D2 ring undergoes major conformational changes during the ATPase cycle of p97-VCP. J Biol Chem 278 : 32784–32793.
53. DalalS, RosserMF, CyrDM, HansonPI (2004) Distinct roles for the AAA ATPases NSF and p97 in the secretory pathway. Mol Biol Cell 15 : 637–648.
54. WangC, LazaridesE (1984) Arsenite-induced changes in methylation of the 70,000 dalton heat shock proteins in chicken embryo fibroblasts. Biochem Biophys Res Commun 119 : 735–743.
55. WangC, LinJM, LazaridesE (1992) Methylations of 70,000-Da heat shock proteins in 3T3 cells: alterations by arsenite treatment, by different stages of growth and by virus transformation. Arch Biochem Biophys 297 : 169–175.
56. KleinJB, BaratiMT, WuR, GozalD, SachlebenLRJr, et al. (2005) Akt-mediated valosin-containing protein 97 phosphorylation regulates its association with ubiquitinated proteins. J Biol Chem 280 : 31870–31881.
57. KoikeM, FukushiJ, IchinoheY, HigashimaeN, FujishiroM, et al. (2010) Valosin-containing protein (VCP) in novel feedback machinery between abnormal protein accumulation and transcriptional suppression. J Biol Chem 285 : 21736–21749.
58. LiG, ZhaoG, SchindelinH, LennarzWJ (2008) Tyrosine phosphorylation of ATPase p97 regulates its activity during ERAD. Biochem Biophys Res Commun 375 : 247–251.
59. LivingstoneM, RuanH, WeinerJ, ClauserKR, StrackP, et al. (2005) Valosin-containing protein phosphorylation at Ser784 in response to DNA damage. Cancer Res 65 : 7533–7540.
60. Mori-KonyaC, KatoN, MaedaR, YasudaK, HigashimaeN, et al. (2009) p97/valosin-containing protein (VCP) is highly modulated by phosphorylation and acetylation. Genes Cells 14 : 483–497.
61. HalawaniD, LeBlancAC, RouillerI, MichnickSW, ServantMJ, et al. (2009) Hereditary inclusion body myopathy-linked p97/VCP mutations in the NH2 domain and the D1 ring modulate p97/VCP ATPase activity and D2 ring conformation. Mol Cell Biol 29 : 4484–4494.
62. MannoA, NoguchiM, FukushiJ, MotohashiY, KakizukaA (2010) Enhanced ATPase activities as a primary defect of mutant valosin-containing proteins that cause inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia. Genes Cells 15 : 911–922.
63. AnguloJF, MoreauPL, MaunouryR, LaporteJ, HillAM, et al. (1989) KIN, a mammalian nuclear protein immunologically related to E. coli RecA protein. Mutat Res 217 : 123–134.
64. BiardDS, MiccoliL, DesprasE, HarperF, PichardE, et al. (2003) Participation of kin17 protein in replication factories and in other DNA transactions mediated by high molecular weight nuclear complexes. Mol Cancer Res 1 : 519–531.
65. KannoucheP, MauffreyP, Pinon-LatailladeG, MatteiMG, SarasinA, et al. (2000) Molecular cloning and characterization of the human KIN17 cDNA encoding a component of the UVC response that is conserved among metazoans. Carcinogenesis 21 : 1701–1710.
66. MiccoliL, FrouinI, NovacO, Di PaolaD, HarperF, et al. (2005) The human stress-activated protein kin17 belongs to the multiprotein DNA replication complex and associates in vivo with mammalian replication origins. Mol Cell Biol 25 : 3814–3830.
67. MakarovEM, MakarovaOV, UrlaubH, GentzelM, WillCL, et al. (2002) Small nuclear ribonucleoprotein remodeling during catalytic activation of the spliceosome. Science 298 : 2205–2208.
68. RappsilberJ, RyderU, LamondAI, MannM (2002) Large-scale proteomic analysis of the human spliceosome. Genome Res 12 : 1231–1245.
69. DonlinLT, AndresenC, JustS, RudenskyE, PappasCT, et al. (2012) Smyd2 controls cytoplasmic lysine methylation of Hsp90 and myofilament organization. Genes Dev 26 : 114–119.
70. ZeghoufM, LiJ, ButlandG, BorkowskaA, CanadienV, et al. (2004) Sequential Peptide Affinity (SPA) system for the identification of mammalian and bacterial protein complexes. J Proteome Res 3 : 463–468.
71. PuigO, CasparyF, RigautG, RutzB, BouveretE, et al. (2001) The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24 : 218–229.
72. RigautG, ShevchenkoA, RutzB, WilmM, MannM, et al. (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17 : 1030–1032.
73. Lavallee-AdamM, CloutierP, CoulombeB, BlanchetteM (2010) Modeling contaminants in AP-MS/MS experiments. J Proteome Res 10 : 886–895.
74. PerkinsDN, PappinDJ, CreasyDM, CottrellJS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20 : 3551–3567.
75. InamitsuM, ItohS, HellmanU, Ten DijkeP, KatoM (2006) Methylation of Smad6 by protein arginine N-methyltransferase 1. FEBS Lett 580 : 6603–6611.
76. ZwijsenRM, BuckleRS, HijmansEM, LoomansCJ, BernardsR (1998) Ligand-independent recruitment of steroid receptor coactivators to estrogen receptor by cyclin D1. Genes Dev 12 : 3488–3498.
77. ApweilerR, Jesus MartinM, O'onovanC, MagraneM, Alam-FaruqueY, et al. (2012) Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res 40: D71–75.
78. LarkinMA, BlackshieldsG, BrownNP, ChennaR, McGettiganPA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23 : 2947–2948.
79. WaterhouseAM, ProcterJB, MartinDM, ClampM, BartonGJ (2009) Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25 : 1189–1191.
80. SaitouN, NeiM (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4 : 406–425.
81. HenikoffS, HenikoffJG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A 89 : 10915–10919.
Štítky
Genetika Reprodukčná medicína
Článek Comparative Genome Structure, Secondary Metabolite, and Effector Coding Capacity across PathogensČlánek TATES: Efficient Multivariate Genotype-Phenotype Analysis for Genome-Wide Association StudiesČlánek Secondary Metabolism and Development Is Mediated by LlmF Control of VeA Subcellular Localization inČlánek Human Disease-Associated Genetic Variation Impacts Large Intergenic Non-Coding RNA ExpressionČlánek The Roles of Whole-Genome and Small-Scale Duplications in the Functional Specialization of GenesČlánek The Role of Autophagy in Genome Stability through Suppression of Abnormal Mitosis under Starvation
Článok vyšiel v časopisePLOS Genetics
Najčítanejšie tento týždeň
2013 Číslo 1- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
-
Všetky články tohto čísla
- A Model of High Sugar Diet-Induced Cardiomyopathy
- Comparative Genome Structure, Secondary Metabolite, and Effector Coding Capacity across Pathogens
- Emerging Function of Fat Mass and Obesity-Associated Protein (Fto)
- Positional Cloning Reveals Strain-Dependent Expression of to Alter Susceptibility to Bleomycin-Induced Pulmonary Fibrosis in Mice
- Genetics of Ribosomal Proteins: “Curiouser and Curiouser”
- Transposable Elements Re-Wire and Fine-Tune the Transcriptome
- Function and Regulation of , a Gene Implicated in Autism and Human Evolution
- MAML1 Enhances the Transcriptional Activity of Runx2 and Plays a Role in Bone Development
- Predicting Mendelian Disease-Causing Non-Synonymous Single Nucleotide Variants in Exome Sequencing Studies
- A Systematic Mapping Approach of 16q12.2/ and BMI in More Than 20,000 African Americans Narrows in on the Underlying Functional Variation: Results from the Population Architecture using Genomics and Epidemiology (PAGE) Study
- Transcription of the Major microRNA–Like Small RNAs Relies on RNA Polymerase III
- Histone H3K56 Acetylation, Rad52, and Non-DNA Repair Factors Control Double-Strand Break Repair Choice with the Sister Chromatid
- Genome-Wide Association Study Identifies a Novel Susceptibility Locus at 12q23.1 for Lung Squamous Cell Carcinoma in Han Chinese
- Genetic Disruption of the Copulatory Plug in Mice Leads to Severely Reduced Fertility
- The [] Prion Exists as a Dynamic Cloud of Variants
- Adult Onset Global Loss of the Gene Alters Body Composition and Metabolism in the Mouse
- Fis Protein Insulates the Gene from Uncontrolled Transcription
- The Meiotic Nuclear Lamina Regulates Chromosome Dynamics and Promotes Efficient Homologous Recombination in the Mouse
- Genome-Wide Haplotype Analysis of Expression Quantitative Trait Loci in Monocytes
- TATES: Efficient Multivariate Genotype-Phenotype Analysis for Genome-Wide Association Studies
- Structural Basis of a Histone H3 Lysine 4 Demethylase Required for Stem Elongation in Rice
- The Ecm11-Gmc2 Complex Promotes Synaptonemal Complex Formation through Assembly of Transverse Filaments in Budding Yeast
- MCM8 Is Required for a Pathway of Meiotic Double-Strand Break Repair Independent of DMC1 in
- Comparative Genomic Analysis of the Endosymbionts of Herbivorous Insects Reveals Eco-Environmental Adaptations: Biotechnology Applications
- Integration of Nodal and BMP Signals in the Heart Requires FoxH1 to Create Left–Right Differences in Cell Migration Rates That Direct Cardiac Asymmetry
- Pharmacodynamics, Population Dynamics, and the Evolution of Persistence in
- A Hybrid Likelihood Model for Sequence-Based Disease Association Studies
- Aberration in DNA Methylation in B-Cell Lymphomas Has a Complex Origin and Increases with Disease Severity
- Multiple Opposing Constraints Govern Chromosome Interactions during Meiosis
- Transcriptional Dynamics Elicited by a Short Pulse of Notch Activation Involves Feed-Forward Regulation by Genes
- Dynamic Large-Scale Chromosomal Rearrangements Fuel Rapid Adaptation in Yeast Populations
- Heterologous Gln/Asn-Rich Proteins Impede the Propagation of Yeast Prions by Altering Chaperone Availability
- Gene Copy-Number Polymorphism Caused by Retrotransposition in Humans
- An Incompatibility between a Mitochondrial tRNA and Its Nuclear-Encoded tRNA Synthetase Compromises Development and Fitness in
- Secondary Metabolism and Development Is Mediated by LlmF Control of VeA Subcellular Localization in
- Single-Stranded Annealing Induced by Re-Initiation of Replication Origins Provides a Novel and Efficient Mechanism for Generating Copy Number Expansion via Non-Allelic Homologous Recombination
- Tbx2 Controls Lung Growth by Direct Repression of the Cell Cycle Inhibitor Genes and
- Suv4-20h Histone Methyltransferases Promote Neuroectodermal Differentiation by Silencing the Pluripotency-Associated Oct-25 Gene
- A Conserved Helicase Processivity Factor Is Needed for Conjugation and Replication of an Integrative and Conjugative Element
- Telomerase-Null Survivor Screening Identifies Novel Telomere Recombination Regulators
- Genome-Wide Analysis Reveals Selection for Important Traits in Domestic Horse Breeds
- Coordinated Degradation of Replisome Components Ensures Genome Stability upon Replication Stress in the Absence of the Replication Fork Protection Complex
- Nkx6.1 Controls a Gene Regulatory Network Required for Establishing and Maintaining Pancreatic Beta Cell Identity
- HIF- and Non-HIF-Regulated Hypoxic Responses Require the Estrogen-Related Receptor in
- Delineating a Conserved Genetic Cassette Promoting Outgrowth of Body Appendages
- The Telomere Capping Complex CST Has an Unusual Stoichiometry, Makes Multipartite Interaction with G-Tails, and Unfolds Higher-Order G-Tail Structures
- Comprehensive Methylome Characterization of and at Single-Base Resolution
- Loci Associated with -Glycosylation of Human Immunoglobulin G Show Pleiotropy with Autoimmune Diseases and Haematological Cancers
- Switchgrass Genomic Diversity, Ploidy, and Evolution: Novel Insights from a Network-Based SNP Discovery Protocol
- Centromere-Like Regions in the Budding Yeast Genome
- Sequencing of Loci from the Elephant Shark Reveals a Family of Genes in Vertebrate Genomes, Forged by Ancient Duplications and Divergences
- Mendelian and Non-Mendelian Regulation of Gene Expression in Maize
- Mutational Spectrum Drives the Rise of Mutator Bacteria
- Human Disease-Associated Genetic Variation Impacts Large Intergenic Non-Coding RNA Expression
- The Roles of Whole-Genome and Small-Scale Duplications in the Functional Specialization of Genes
- Sex-Specific Signaling in the Blood–Brain Barrier Is Required for Male Courtship in
- A Newly Uncovered Group of Distantly Related Lysine Methyltransferases Preferentially Interact with Molecular Chaperones to Regulate Their Activity
- Is Required for Leptin-Mediated Depolarization of POMC Neurons in the Hypothalamic Arcuate Nucleus in Mice
- Unlocking the Bottleneck in Forward Genetics Using Whole-Genome Sequencing and Identity by Descent to Isolate Causative Mutations
- The Role of Autophagy in Genome Stability through Suppression of Abnormal Mitosis under Starvation
- MTERF3 Regulates Mitochondrial Ribosome Biogenesis in Invertebrates and Mammals
- Downregulation and Altered Splicing by in a Mouse Model of Facioscapulohumeral Muscular Dystrophy (FSHD)
- NBR1-Mediated Selective Autophagy Targets Insoluble Ubiquitinated Protein Aggregates in Plant Stress Responses
- Retroactive Maintains Cuticle Integrity by Promoting the Trafficking of Knickkopf into the Procuticle of
- Phenome-Wide Association Study (PheWAS) for Detection of Pleiotropy within the Population Architecture using Genomics and Epidemiology (PAGE) Network
- Genetic and Functional Modularity of Activities in the Specification of Limb-Innervating Motor Neurons
- A Population Genetic Model for the Maintenance of R2 Retrotransposons in rRNA Gene Loci
- A Quartet of PIF bHLH Factors Provides a Transcriptionally Centered Signaling Hub That Regulates Seedling Morphogenesis through Differential Expression-Patterning of Shared Target Genes in
- A Genome-Wide Integrative Genomic Study Localizes Genetic Factors Influencing Antibodies against Epstein-Barr Virus Nuclear Antigen 1 (EBNA-1)
- Mutation of the Diamond-Blackfan Anemia Gene in Mouse Results in Morphological and Neuroanatomical Phenotypes
- Life, the Universe, and Everything: An Interview with David Haussler
- Alternative Oxidase Expression in the Mouse Enables Bypassing Cytochrome Oxidase Blockade and Limits Mitochondrial ROS Overproduction
- An Evolutionarily Conserved Synthetic Lethal Interaction Network Identifies FEN1 as a Broad-Spectrum Target for Anticancer Therapeutic Development
- The Flowering Repressor Underlies a Novel QTL Interacting with the Genetic Background
- Telomerase Is Required for Zebrafish Lifespan
- and Diversified Expression of the Gene Family Bolster the Floral Stem Cell Network
- Susceptibility Loci Associated with Specific and Shared Subtypes of Lymphoid Malignancies
- An Insertion in 5′ Flanking Region of Causes Blue Eggshell in the Chicken
- Increased Maternal Genome Dosage Bypasses the Requirement of the FIS Polycomb Repressive Complex 2 in Arabidopsis Seed Development
- WNK1/HSN2 Mutation in Human Peripheral Neuropathy Deregulates Expression and Posterior Lateral Line Development in Zebrafish ()
- Synergistic Interaction of Rnf8 and p53 in the Protection against Genomic Instability and Tumorigenesis
- Dot1-Dependent Histone H3K79 Methylation Promotes Activation of the Mek1 Meiotic Checkpoint Effector Kinase by Regulating the Hop1 Adaptor
- A Heterogeneous Mixture of F-Series Prostaglandins Promotes Sperm Guidance in the Reproductive Tract
- Starvation, Together with the SOS Response, Mediates High Biofilm-Specific Tolerance to the Fluoroquinolone Ofloxacin
- Directed Evolution of a Model Primordial Enzyme Provides Insights into the Development of the Genetic Code
- Genome-Wide Screens for Tinman Binding Sites Identify Cardiac Enhancers with Diverse Functional Architectures
- PLOS Genetics
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- Function and Regulation of , a Gene Implicated in Autism and Human Evolution
- An Insertion in 5′ Flanking Region of Causes Blue Eggshell in the Chicken
- Comprehensive Methylome Characterization of and at Single-Base Resolution
- Susceptibility Loci Associated with Specific and Shared Subtypes of Lymphoid Malignancies
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy