#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Mendelian and Non-Mendelian Regulation of Gene Expression in Maize


Transcriptome variation plays an important role in affecting the phenotype of an organism. However, an understanding of the underlying mechanisms regulating transcriptome variation in segregating populations is still largely unknown. We sought to assess and map variation in transcript abundance in maize shoot apices in the intermated B73×Mo17 recombinant inbred line population. RNA–based sequencing (RNA–seq) allowed for the detection and quantification of the transcript abundance derived from 28,603 genes. For a majority of these genes, the population mean, coefficient of variation, and segregation patterns could be predicted by the parental expression levels. Expression quantitative trait loci (eQTL) mapping identified 30,774 eQTL including 96 trans-eQTL “hotspots,” each of which regulates the expression of a large number of genes. Interestingly, genes regulated by a trans-eQTL hotspot tend to be enriched for a specific function or act in the same genetic pathway. Also, genomic structural variation appeared to contribute to cis-regulation of gene expression. Besides genes showing Mendelian inheritance in the RIL population, we also found genes whose expression level and variation in the progeny could not be predicted based on parental difference, indicating that non-Mendelian factors also contribute to expression variation. Specifically, we found 145 genes that show patterns of expression reminiscent of paramutation such that all the progeny had expression levels similar to one of the two parents. Furthermore, we identified another 210 genes that exhibited unexpected patterns of transcript presence/absence. Many of these genes are likely to be gene fragments resulting from transposition, and the presence/absence of their transcripts could influence expression levels of their ancestral syntenic genes. Overall, our results contribute to the identification of novel expression patterns and broaden the understanding of transcriptional variation in plants.


Vyšlo v časopise: Mendelian and Non-Mendelian Regulation of Gene Expression in Maize. PLoS Genet 9(1): e32767. doi:10.1371/journal.pgen.1003202
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003202

Souhrn

Transcriptome variation plays an important role in affecting the phenotype of an organism. However, an understanding of the underlying mechanisms regulating transcriptome variation in segregating populations is still largely unknown. We sought to assess and map variation in transcript abundance in maize shoot apices in the intermated B73×Mo17 recombinant inbred line population. RNA–based sequencing (RNA–seq) allowed for the detection and quantification of the transcript abundance derived from 28,603 genes. For a majority of these genes, the population mean, coefficient of variation, and segregation patterns could be predicted by the parental expression levels. Expression quantitative trait loci (eQTL) mapping identified 30,774 eQTL including 96 trans-eQTL “hotspots,” each of which regulates the expression of a large number of genes. Interestingly, genes regulated by a trans-eQTL hotspot tend to be enriched for a specific function or act in the same genetic pathway. Also, genomic structural variation appeared to contribute to cis-regulation of gene expression. Besides genes showing Mendelian inheritance in the RIL population, we also found genes whose expression level and variation in the progeny could not be predicted based on parental difference, indicating that non-Mendelian factors also contribute to expression variation. Specifically, we found 145 genes that show patterns of expression reminiscent of paramutation such that all the progeny had expression levels similar to one of the two parents. Furthermore, we identified another 210 genes that exhibited unexpected patterns of transcript presence/absence. Many of these genes are likely to be gene fragments resulting from transposition, and the presence/absence of their transcripts could influence expression levels of their ancestral syntenic genes. Overall, our results contribute to the identification of novel expression patterns and broaden the understanding of transcriptional variation in plants.


Zdroje

1. ChenZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58: 377–406.

2. SchnablePS, WareD, FultonRS, SteinJC, WeiF, et al. (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326: 1112–1115.

3. GoreMA, ChiaJM, ElshireRJ, SunQ, ErsozES, et al. (2009) A first-generation haplotype map of maize. Science 326: 1115–1117.

4. BhattramakkiD, DolanM, HanafeyM, WinelandR, VaskeD, et al. (2002) Insertion-deletion polymorphisms in 3′ regions of maize genes occur frequently and can be used as highly informative genetic markers. Plant Mol Biol 48: 539–547.

5. LaiJ, LiR, XuX, JinW, XuM, et al. (2010) Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet 42: 1027–1030.

6. BelóA, BeattyMK, HondredD, FenglerKA, LiB, et al. (2010) Allelic genome structural variations in maize detected by array comparative genome hybridization. Theor Appl Genet 120: 355–367.

7. Swanson-WagnerRA, EichtenSR, KumariS, TiffinP, SteinJC, et al. (2010) Pervasive gene content variation and copy number variation in both maize and its undomesticated progenitor. Genome Res 20: 1689–1699.

8. McClintockB, NeurosporaI (1945) Preliminary observations of the chromosomes of Neurospora crassa. Am J Bot 1945: 671–678.

9. McClintockB (1953) Induction of instability at selected loci in maize. Genetics 38: 579–599.

10. SanMiguelP, TikhonovA, JinYK, MotchoulskaiaN, ZakharovD, et al. (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765–768.

11. SanMiguelP, BennetzenJL (1998) Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Annals Bot 82: 37–44.

12. MeyersBC, TingeySV, MorganteM (2001) Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res 11: 1660–1676.

13. MessingJ, BhartiAK, KarlowskiWM, GundlachH, KimHR, et al. (2004) Sequence composition and genome organization of maize. Proc Natl Acad Sci USA 101: 14349–14354.

14. LaiJ, LiY, MessingJ, DoonerHK (2005) Gene movement by Helitron transposons contributes to the haplotype variability of maize. Proc Natl Acad Sci USA 102: 9068–9073.

15. MorganteM, BrunnerS, PeaG, FenglerK, ZuccoloA, et al. (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37: 997–1002.

16. DoonerHK, HeL (2008) Maize genome structure variation: interplay between retrotransposon polymorphisms and genic recombination. Plant Cell 20: 249–258.

17. TenaillonMI, HuffordMB, GautBS, Ross-IbarraJ (2011) Genome size and transposable element content as determined by high-throughput sequencing in maize and Zea luxurians. Genome Biol Evol 3: 219–229.

18. JinYK, BennetzenJL (1994) Integration and nonrandom mutation of a plasma membrane proton ATPase gene fragment within the Bs1 retroelement of maize. Plant Cell 6: 1177–1186.

19. KapitonovVV, JurkaJ (2001) Rolling-circle transposons in eukaryotes. Proc Natl Acad Sci USA 98: 8714–8719.

20. JiangN, BaoZ, ZhangX, EddySR, WesslerSR (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431: 569–573.

21. GuptaS, GallavottiA, StrykerGA, SchmidtRJ, LalSK (2005) A novel class of Helitron-related transposable elements in maize contain portions of multiple pseudogenes. Plant Mol Biol 57: 115–127.

22. BennetzenJL (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 15: 621–627.

23. LiQ, LiL, DaiJR, LiJS, YanJB (2009) Identification and characterization of CACTA transposable elements capturing gene fragments in maize. Chin Sci Bull 54: 642–651.

24. BarbagliaAM, KlusmanKM, HigginsJ, ShawJR, HannahLC, et al. (2012) Gene capture by helitron transposons reshuffles the transcriptome of maize. Genetics 190: 965–975.

25. EichtenSR, Swanson-WagnerRA, SchnableJC, WatersAJ, HermansonPJ, et al. (2011) Heritable epigenetic variation among maize inbreds. PLoS Genet 7: e1002372 doi:10.1371/journal.pgen.1002372.

26. HollandJB (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10: 156–161.

27. KliebensteinD (2009) Quantitative genomics: analyzing intraspecific variation using global gene expression polymorphisms or eQTLs. Annu Rev Plant Biol 60: 93–114.

28. Swanson-WagnerRA, JiaY, DeCookR, BorsukLA, NettletonD, et al. (2006) All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents. Proc Natl Acad Sci USA 103: 6805–6810.

29. StuparRM, SpringerNM (2006) Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid. Genetics 173: 2199–2210.

30. GuoM, RupeMA, YangX, CrastaO, ZinselmeierC, et al. (2006) Genome-wide transcript analysis of maize hybrids: allelic additive gene expression and yield heterosis. Theor Appl Genet 113: 831–845.

31. MeyerS, PospisilH, ScholtenS (2007) Heterosis associated gene expression in maize embryos 6 days after fertilization exhibits additive, dominant and overdominant pattern. Plant Mol Biol 63: 381–391.

32. UzarowskaA, KellerB, PiephoHP, SchwarzG, IngvardsenC, et al. (2007) Comparative expression profiling in meristems of inbred-hybrid triplets of maize based on morphological investigations of heterosis for plant height. Plant Mol Biol 63: 21–34.

33. StuparRM, GardinerJM, OldreAG, HaunWJ, ChandlerVL, et al. (2008) Gene expression analyses in maize inbreds and hybrids with varying levels of heterosis. BMC Plant Biol 8: 33.

34. HanseyCN, VaillancourtB, SekhonRS, de LeonN, KaepplerSM, et al. (2012) Maize (Zea mays L.) genome diversity as revealed by RNA-sequencing. PLoS ONE 7: e33071 doi:10.1371/journal.pone.0033071.

35. DamervalC, MauriceA, JosseJM, de VienneD (1994) Quantitative trait loci underlying gene product variation: a novel perspective for analyzing regulation of genome expression. Genetics 137: 289–301.

36. JoosenRV, LigterinkW, HilhorstHW, KeurentjesJJ (2009) Advances in genetical genomics of plants. Curr Genomics 10: 540–549.

37. SchadtEE, MonksSA, DrakeTA, LusisAJ, CheN, et al. (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422: 297–302.

38. DeCookR, LallS, NettletonD, HowellSH (2006) Genetic regulation of gene expression during shoot development in Arabidopsis. Genetics 172: 1155–1164.

39. WestMA, KimK, KliebensteinDJ, van LeeuwenH, MichelmoreRW, et al. (2007) Global eQTL mapping reveals the complex genetic architecture of transcript-level variation in Arabidopsis. Genetics 175: 1441–1450.

40. JordanMC, SomersDJ, BanksTW (2007) Identifying regions of the wheat genome controlling seed development by mapping expression quantitative trait loci. Plant Biotechnol J 5: 442–453.

41. PotokinaE, DrukaA, LuoZ, WiseR, WaughR, et al. (2008) Gene expression quantitative trait locus analysis of 16 000 barley genes reveals a complex pattern of genome-wide transcriptional regulation. Plant J 53: 90–101.

42. WangJ, YuH, XieW, XingY, YuS, et al. (2010) A global analysis of QTLs for expression variations in rice shoots at the early seedling stage. Plant J 63: 1063–1074.

43. Swanson-WagnerRA, DeCookR, JiaY, BancroftT, JiT, et al. (2009) Paternal dominance of trans-eQTL influences gene expression patterns in maize hybrids. Science 326: 1118–1120.

44. HollowayB, LuckS, BeattyM, RafalskiJA, LiB (2011) Genome-wide expression quantitative trait loci (eQTL) analysis in maize. BMC Genomics 12: 336.

45. WentzellAM, RoweHC, HansenBG, TicconiC, HalkierBA, et al. (2007) Linking metabolic QTLs with network and cis-eQTLs controlling biosynthetic pathways. PLoS Genet 3: e162 doi:10.1371/journal.pgen.0030162.

46. MoscouMJ, LauterN, SteffensonB, WiseRP (2011) Quantitative and qualitative stem rust resistance factors in barley are associated with transcriptional suppression of defense regulons. PLoS Genet 7: e1002208 doi:10.1371/journal.pgen.1002208.

47. ShivaprasadPV, DunnRM, SantosBA, BassettA, BaulcombeDC (2011) Extraordinary transgressive phenotypes of hybrid tomato are influenced by epigenetics and small silencing RNAs. EMBO J 31: 257–266.

48. WangZ, GersteinM, SnyderM (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10: 57–63.

49. MontgomerySB, SammethM, Gutierrez-ArcelusM, LachRP, IngleC, et al. (2010) Transcriptome genetics using second generation sequencing in a Caucasian population. Nature 464: 773–777.

50. LeeM, SharopovaN, BeavisWD, GrantD, KattM, et al. (2002) Expanding the genetic map of maize with the intermated B73×Mo17 (IBM) population. Plant Mol Biol 48: 453–461.

51. CandelaH, HakeS (2008) The art and design of genetic screens: maize. Nat Rev Genet 9: 192–203.

52. BessarabovaM, KirillovE, ShiW, BugrimA, NikolskyY, et al. (2010) Bimodal gene expression patterns in breast cancer. BMC Genomics Suppl 1: S8.

53. ChandlerVL (2007) Paramutation: from maize to mice. Cell 126: 641–645.

54. BrinkRA (1956) A genetic change associated with the R locus in maize which is directed and potentially reversible. Genetics 41: 872–889.

55. BrinkRA (1973) Paramutation. Annu Rev Genet 7: 129–152.

56. Mittelsten ScheidO, AfsarK, PaszkowskiJ (2003) Formation of stable epialleles and their paramutation-like interaction in tetraploid Arabidopsis thaliana. Nature Genet 34: 450–454.

57. StokesTL, RichardsEJ (2002) Induced instability of two Arabidopsis constitutive pathogen-response alleles. Proc Natl Acad Sci USA 99: 7792–7796.

58. MonacoMK, SenTZ, RenL, SchaefferM, AmarasingheV, et al. (2012) MaizeCyc: Metabolic Networks in Maize. Plant & Animal Genome XX: 858–858.

59. SpringerNM, YingK, FuY, JiT, YehCT, et al. (2009) Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet 5: e1000734 doi:10.1371/journal.pgen.1000734.

60. SchnableJC, FreelingM (2011) Genes identified by visible mutant phenotypes show increased bias toward one of two subgenomes of maize. PLoS ONE 6: e17855 doi:10.1371/journal.pone.0017855.

61. GiladY, RifkinSA, PritchardJK (2008) Revealing the architecture of gene regulation: the promise of eQTL studies. Trends Genet 24: 408–415.

62. SinghND, ShawKL (2012) On the scent of pleiotropy. Proc Natl Acad Sci USA 109: 5–6.

63. BrinkRA, MikulaB (1958) Plant color effects of certain anomalous forms of the Rr allele in maize. Z Ind Abst Vererb 89: 94–102.

64. ChandlerVL, StamM (2004) Chromatin conversations: mechanisms and implications of paramutation. Nat Rev Genet 5: 532–544.

65. ErhardKFJr, HollickJB (2011) Paramutation: a process for acquiring trans-generational regulatory states. Curr Opin Plant Biol 14: 210–216.

66. DorweilerJE, CareyCC, KuboKM, HollickJB, KermicleJL, et al. (2000) Mediator of paramutation1 is required for establishment and maintenance of paramutation at multiple maize loci. Plant Cell 12: 2101–2118.

67. Arteaga-VazquezMA, ChandlerVL (2010) Paramutation in maize: RNA mediated trans-generational gene silencing. Curr Opin Genet Dev 20: 156–163.

68. SchlattlA, AndersS, WaszakSM, HuberW, KorbelJO (2011) Relating CNVs to transcriptome data at fine resolution: assessment of the effect of variant size, type, and overlap with functional regions. Genome Res 21: 2004–2013.

69. GroszmannM, GreavesIK, AlbertynZI, ScofieldGN, PeacockWJ, et al. (2011) Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor. Proc Natl Acad Sci USA 108: 2617–2622.

70. GreavesIK, GroszmannM, YingH, TaylorJM, PeacockWJ, et al. (2012) Trans chromosomal methylation in Arabidopsis hybrids. Proc Natl Acad Sci USA 109: 3570–3575.

71. FuH, DoonerHK (2002) Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci U S A 99: 9573–9578.

72. SpringerNM, StuparRM (2007) Allele-specific expression patterns reveal biases and embryo-specific parent-of-origin effects in hybrid maize. Plant Cell 19: 2391–2402.

73. BrunnerS, FenglerK, MorganteM, TingeyS, RafalskiA (2005) Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell 17: 343–360.

74. DuC, FefelovaN, CaronnaJ, HeL, DoonerHK (2009) The polychromatic Helitron landscape of the maize genome. Proc Natl Acad Sci USA 106: 19916–19921.

75. LiP, PonnalaL, GandotraN, WangL, SiY, et al. (2009) The developmental dynamics of the maize leaf transcriptome. Nat Genet 42: 1060–1067.

76. KorbieDJ, MattickJS (2008) Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat Protoc 3: 1452–1456.

77. VilellaAJ, SeverinJ, Ureta-VidalA, HengL, DurbinR, et al. (2009) EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome Res 19: 327–335.

78. Van Ooijen JW (2006) JoinMap 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, Netherlands.

79. ZengZB (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA 90: 10972–10976.

80. ZengZB (1994) Precision mapping of quantitative trait loci. Genetics 136: 1457–1468.

81. Basten CJ, Weir BS, Zeng ZB. 2004. QTL Cartographer Version 1.17. Department of Statistics, North Carolina State University, Raleigh NC.

82. MaereS, HeymansK, KuiperM (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21: 3448–3449.

83. ShannonP, MarkielA, OzierO, BaligaNS, WangJT, et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13: 2498–2504.

84. DuZ, ZhouX, LingY, ZhangZ, SuZ (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38: W64–70.

85. HollandJB, PortyankoVA, HoffmannDL, LeeM (2002) Genomic regions controlling vernalization and photoperiod responses in oat. Theor Appl Genet 105: 113–126.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#