#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Transcription of the Major microRNA–Like Small RNAs Relies on RNA Polymerase III


Most plant and animal microRNAs (miRNAs) are transcribed by RNA polymerase II. We previously discovered miRNA–like small RNAs (milRNAs) in the filamentous fungus Neurospora crassa and uncovered at least four different pathways for milRNA production. To understand the evolutionary origin of milRNAs, we determined the roles of polymerases II and III (Pol II and Pol III) in milRNA transcription. Our results show that Pol III is responsible for the transcription of the major milRNAs produced in this organism. The inhibition of Pol III activity by an inhibitor or by gene silencing abolishes the production of most abundant milRNAs and pri–milRNAs. In addition, Pol III associates with these milRNA producing loci. Even though silencing of Pol II does not affect the synthesis of the most abundant milRNAs, Pol II or both Pol II and Pol III are associated with some milRNA–producing loci, suggesting a regulatory interaction between the two polymerases for some milRNA transcription. Furthermore, we show that one of the Pol III–transcribed milRNAs is derived from a tRNA precursor, and its biogenesis requires RNase Z, which cleaves the tRNA moiety to generate pre–milRNA. Our study identifies the transcriptional machinery responsible for the synthesis of fungal milRNAs and sheds light on the evolutionary origin of eukaryotic small RNAs.


Vyšlo v časopise: Transcription of the Major microRNA–Like Small RNAs Relies on RNA Polymerase III. PLoS Genet 9(1): e32767. doi:10.1371/journal.pgen.1003227
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003227

Souhrn

Most plant and animal microRNAs (miRNAs) are transcribed by RNA polymerase II. We previously discovered miRNA–like small RNAs (milRNAs) in the filamentous fungus Neurospora crassa and uncovered at least four different pathways for milRNA production. To understand the evolutionary origin of milRNAs, we determined the roles of polymerases II and III (Pol II and Pol III) in milRNA transcription. Our results show that Pol III is responsible for the transcription of the major milRNAs produced in this organism. The inhibition of Pol III activity by an inhibitor or by gene silencing abolishes the production of most abundant milRNAs and pri–milRNAs. In addition, Pol III associates with these milRNA producing loci. Even though silencing of Pol II does not affect the synthesis of the most abundant milRNAs, Pol II or both Pol II and Pol III are associated with some milRNA–producing loci, suggesting a regulatory interaction between the two polymerases for some milRNA transcription. Furthermore, we show that one of the Pol III–transcribed milRNAs is derived from a tRNA precursor, and its biogenesis requires RNase Z, which cleaves the tRNA moiety to generate pre–milRNA. Our study identifies the transcriptional machinery responsible for the synthesis of fungal milRNAs and sheds light on the evolutionary origin of eukaryotic small RNAs.


Zdroje

1. BartelDP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.

2. AmbrosV, BartelB, BartelDP, BurgeCB, CarringtonJC, et al. (2003) A uniform system for microRNA annotation. RNA 9: 277–279.

3. LeeRC, FeinbaumRL, AmbrosV (1993) The C. elegans heterochromatic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843–854.

4. Lagos-QuintanaM, RauhutR, LendeckelW, TuschlT (2001) Identification of novel genes coding for small expressed RNAs. Science 294: 853–858.

5. LeeRC, AmbrosV (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294: 862–864.

6. LlaveC, KasschauKD, RectorMA, CarringtonJC (2002) Endogenous and silencing-associated small RNAs in plants. Plant Cell 14: 1605–1619.

7. MolnarA, SchwachF, StudholmeDJ, ThuenemannEC, BaulcombeDC (2007) miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 447: 1126–1129.

8. ZhaoT, LiG, MiS, LiS, HannonGJ, et al. (2007) A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev 21: 1190–1203.

9. LeeY, KimM, HanJ, YeomKH, LeeS, et al. (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23: 4051–4060.

10. CaiX, HagedornCH, CullenBR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10: 1957–1966.

11. KimVN, HanJ, SiomiMC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10: 126–139.

12. YangJS, LaiEC (2011) Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell 43: 892–903.

13. DieciG, FiorinoG, CastelnuovoM, TeichmannM, PaganoA (2007) The expanding RNA polymerase III transcriptome. Trends Genet 23: 614–622.

14. WhiteRJ (2011) Transcription by RNA polymerase III: more complex than we thought. Nat Rev Genet 12: 459–463.

15. OlerAJ, AllaRK, RobertsDN, WongA, HollenhorstPC, et al. (2010) Human RNA polymerase III transcriptomes and relationships to Pol II promoter chromatin and enhancer-binding factors. Nat Struct Mol Biol 17: 620–628.

16. RahaD, WangZ, MoqtaderiZ, WuL, ZhongG, et al. (2010) Close association of RNA polymerase II and many transcription factors with Pol III genes. Proc Natl Acad Sci U S A 107: 3639–3644.

17. OrioliA, PascaliC, PaganoA, TeichmannM, DieciG (2012) RNA polymerase III transcription control elements: themes and variations. Gene 493: 185–194.

18. HausseckerD, HuangY, LauA, ParameswaranP, FireAZ, et al. (2010) Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 16: 673–695.

19. BogerdHP, KarnowskiHW, CaiX, ShinJ, PohlersM, et al. (2010) A mammalian herpesvirus uses noncanonical expression and processing mechanisms to generate viral MicroRNAs. Mol Cell 37: 135–142.

20. DiebelKW, SmithAL, van DykLF (2010) Mature and functional viral miRNAs transcribed from novel RNA polymerase III promoters. RNA 16: 170–185.

21. KincaidRP, BurkeJM, SullivanCS (2012) RNA virus microRNA that mimics a B-cell oncomiR. Proc Natl Acad Sci U S A 109: 3077–3082.

22. LeeHC, LiL, GuW, XueZ, CrosthwaiteSK, et al. (2010) Diverse pathways generate microRNA-like RNAs and Dicer-independent small interfering RNAs in fungi. Mol Cell 38: 803–814.

23. XueZ, YuanH, GuoJ, LiuY (2012) Reconstitution of an Argonaute-Dependent Small RNA Biogenesis Pathway Reveals a Handover Mechanism Involving the RNA Exosome and the Exonuclease QIP. Mol Cell

24. BragliaP, PercudaniR, DieciG (2005) Sequence context effects on oligo(dT) termination signal recognition by Saccharomyces cerevisiae RNA polymerase III. J Biol Chem 280: 19551–19562.

25. WuL, PanJ, ThoroddsenV, WysongDR, BlackmanRK, et al. (2003) Novel small-molecule inhibitors of RNA polymerase III. Eukaryot Cell 2: 256–264.

26. WernerM, ThuriauxP, SoutourinaJ (2009) Structure-function analysis of RNA polymerases I and III. Curr Opin Struct Biol 19: 740–745.

27. SchrammL, HernandezN (2002) Recruitment of RNA polymerase III to its target promoters. Genes Dev 16: 2593–2620.

28. HartmannRK, GossringerM, SpathB, FischerS, MarchfelderA (2009) The making of tRNAs and more - RNase P and tRNase Z. Prog Mol Biol Transl Sci 85: 319–368.

29. PhizickyEM, HopperAK (2010) tRNA biology charges to the front. Genes Dev 24: 1832–1860.

30. WalkerSC, EngelkeDR (2006) Ribonuclease P: the evolution of an ancient RNA enzyme. Crit Rev Biochem Mol Biol 41: 77–102.

31. BorchertGM, LanierW, DavidsonBL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13: 1097–1101.

32. ListermanI, BledauAS, GrishinaI, NeugebauerKM (2007) Extragenic accumulation of RNA polymerase II enhances transcription by RNA polymerase III. PLoS Genet 3: e212 doi:10.1371/journal.pgen.0030212.

33. GhildiyalM, ZamorePD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10: 94–108.

34. ChengP, HeQ, HeQ, WangL, LiuY (2005) Regulation of the Neurospora circadian clock by an RNA helicase. Genes Dev 19: 234–241.

35. MaitiM, LeeHC, LiuY (2007) QIP, a putative exonuclease, interacts with the Neurospora Argonaute protein and facilitates conversion of duplex siRNA into single strands. Genes Dev 21: 590–600.

36. ZhengL, BaumannU, ReymondJL (2004) An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res 32: e115.

37. ChoudharyS, LeeHC, MaitiM, HeQ, ChengP, et al. (2007) A double-stranded-RNA response program important for RNA interference efficiency. Mol Cell Biol 27: 3995–4005.

38. AronsonBD, JohnsonKA, LorosJJ, DunlapJC (1994) Negative feedback defining a circadian clock: autoregulation of the clock gene frequency. Science 263: 1578–1584.

39. CatalanottoC, AzzalinG, MacinoG, CogoniC (2002) Involvement of small RNAs and role of the qde genes in the gene silencing pathway in Neurospora. Genes Dev 16: 790–795.

40. ParkhomchukD, BorodinaT, AmstislavskiyV, BanaruM, HallenL, et al. (2009) Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res 37: e123.

41. LiR, LiY, KristiansenK, WangJ (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24: 713–714.

42. TrapnellC, PachterL, SalzbergSL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25: 1105–1111.

43. LangmeadB, TrapnellC, PopM, SalzbergSL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25.

44. TrapnellC, WilliamsBA, PerteaG, MortazaviA, KwanG, et al. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28: 511–515.

45. RobertsA, TrapnellC, DonagheyJ, RinnJL, PachterL (2011) Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol 12: R22.

46. RobertsA, PimentelH, TrapnellC, PachterL (2011) Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics 27: 2325–2329.

47. ThorvaldsdottirH, RobinsonJT, MesirovJP (2012) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#