#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Increased Maternal Genome Dosage Bypasses the Requirement of the FIS Polycomb Repressive Complex 2 in Arabidopsis Seed Development


Seed development in flowering plants is initiated after a double fertilization event with two sperm cells fertilizing two female gametes, the egg cell and the central cell, leading to the formation of embryo and endosperm, respectively. In most species the endosperm is a polyploid tissue inheriting two maternal genomes and one paternal genome. As a consequence of this particular genomic configuration the endosperm is a dosage sensitive tissue, and changes in the ratio of maternal to paternal contributions strongly impact on endosperm development. The FERTILIZATION INDEPENDENT SEED (FIS) Polycomb Repressive Complex 2 (PRC2) is essential for endosperm development; however, the underlying forces that led to the evolution of the FIS-PRC2 remained unknown. Here, we show that the functional requirement of the FIS-PRC2 can be bypassed by increasing the ratio of maternal to paternal genomes in the endosperm, suggesting that the main functional requirement of the FIS-PRC2 is to balance parental genome contributions and to reduce genetic conflict. We furthermore reveal that the AGAMOUS LIKE (AGL) gene AGL62 acts as a dosage-sensitive seed size regulator and that reduced expression of AGL62 might be responsible for reduced size of seeds with increased maternal genome dosage.


Vyšlo v časopise: Increased Maternal Genome Dosage Bypasses the Requirement of the FIS Polycomb Repressive Complex 2 in Arabidopsis Seed Development. PLoS Genet 9(1): e32767. doi:10.1371/journal.pgen.1003163
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003163

Souhrn

Seed development in flowering plants is initiated after a double fertilization event with two sperm cells fertilizing two female gametes, the egg cell and the central cell, leading to the formation of embryo and endosperm, respectively. In most species the endosperm is a polyploid tissue inheriting two maternal genomes and one paternal genome. As a consequence of this particular genomic configuration the endosperm is a dosage sensitive tissue, and changes in the ratio of maternal to paternal contributions strongly impact on endosperm development. The FERTILIZATION INDEPENDENT SEED (FIS) Polycomb Repressive Complex 2 (PRC2) is essential for endosperm development; however, the underlying forces that led to the evolution of the FIS-PRC2 remained unknown. Here, we show that the functional requirement of the FIS-PRC2 can be bypassed by increasing the ratio of maternal to paternal genomes in the endosperm, suggesting that the main functional requirement of the FIS-PRC2 is to balance parental genome contributions and to reduce genetic conflict. We furthermore reveal that the AGAMOUS LIKE (AGL) gene AGL62 acts as a dosage-sensitive seed size regulator and that reduced expression of AGL62 might be responsible for reduced size of seeds with increased maternal genome dosage.


Zdroje

1. DrewsGN, YadegariR (2002) Development and function of the angiosperm female gametophyte. Annu Rev Genet 36: 99–124.

2. IngramGC (2010) Family life at close quarters: communication and constraint in angiosperm seed development. Protoplasma 247: 195–214.

3. CostaLM, Gutierrez-MarcosJF, DickinsonHG (2004) More than a yolk: the short life and complex times of the plant endosperm. Trends Plant Sci 9: 507–514.

4. BrownRC, LemmonBE, NguyenH, OlsenO-A (1999) Development of the endosperm in Arabidopsis thaliana. Sex Plant Reprod 12: 32–42.

5. Boisnard-LorigC, Colon-CarmonaA, BauchM, HodgeS, DoernerP, et al. (2001) YFP fusion protein in Arabidopsis show that syncytial endosperm is divided in mitotic domains. Plant Cell 13: 495–509.

6. ScottRJ, SpielmanM, BaileyJ, DickinsonHG (1998) Parent-of-origin effects on seed development in Arabidopsis thaliana. Development 125: 3329–3341.

7. GarciaD, SaingeryV, ChambrierP, MayerU, JürgensG, et al. (2003) Arabidopsis haiku mutants reveal new controls of seed size by endosperm. Plant Physiol 131: 1661–1670.

8. DilkesBP, SpielmanM, WeizbauerR, WatsonB, Burkart-WacoD, et al. (2008) The maternally expressed WRKY transcription factor TTG2 controls lethality in interploidy crosses of Arabidopsis. PLoS Biol 6: e308 doi:10.1371/journal.pbio.0060308.

9. ErilovaA, BrownfieldL, ExnerV, RosaM, TwellD, et al. (2009) Imprinting of the Polycomb group gene MEDEA serves as a ploidy sensor in Arabidopsis. PLoS Genet 5: e1000663 doi:10.1371/journal.pgen.1000663.

10. HennigL, DerkachevaM (2009) Diversity of Polycomb group complexes in plants: same rules, different players? Trends Genet 25: 414–423.

11. BeiselC, ParoR (2011) Silencing chromatin: comparing modes and mechanisms. Nat Rev Genet 12: 123–135.

12. ChaudhuryAM, MingL, MillerC, CraigS, DennisES, et al. (1997) Fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA 94: 4223–4228.

13. OhadN, MargossianL, HsuY-C, WilliamsC, FischerR (1996) A mutation that allows endosperm development without fertilization. Proc Natl Acad Sci USA 93: 5319–5324.

14. KöhlerC, HennigL, BouveretR, GheyselinckJ, GrossniklausU, et al. (2003) Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development. EMBO J 22: 4804–4814.

15. GuittonAE, PageDR, ChambrierP, LionnetC, FaureJE, et al. (2004) Identification of new members of FERTILIZATION INDEPENDENT SEED Polycomb group pathway involved in the control of seed development in Arabidopsis thaliana. Development 131: 2971–2981.

16. KiyosueT, OhadN, YadegariR, HannonM, DinnenyJ, et al. (1999) Control of fertilization-independent endosperm development by the MEDEA Polycomb gene in Arabidopsis. Proc Natl Acad Sci USA 96: 4186–4191.

17. SorensenMB, ChaudhuryAM, RobertH, BancharelE, BergerF (2001) Polycomb group genes control pattern formation in plant seed. Curr Biol 11: 277–281.

18. JullienPE, BergerF (2010) Parental genome dosage imbalance deregulates imprinting in Arabidopsis. PLoS Genet 6: e1000885 doi:10.1371/journal.pgen.1000885.

19. LuJ, ZhangC, BaulcombeDC, ChenZJ (2012) Maternal siRNAs as regulators of parental genome imbalance and gene expression in endosperm of Arabidopsis seeds. Proc Natl Acad Sci USA 109: 5529–5534.

20. d'ErfurthI, JolivetS, FrogerN, CatriceO, NovatchkovaM, et al. (2009) Turning meiosis into mitosis. PLoS Biol 7: e1000124 doi:10.1371/journal.pbio.1000124.

21. GarciaD, Fitz GeraldJN, BergerF (2005) Maternal Control of Integument Cell Elongation and Zygotic Control of Endosperm Growth Are Coordinated to Determine Seed Size in Arabidopsis. Plant Cell 17: 52–60.

22. LuoM, DennisES, BergerF, PeacockWJ, ChaudhuryA (2005) MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc Natl Acad Sci U S A 102: 17531–17536.

23. RaviM, MarimuthuMP, SiddiqiI (2008) Gamete formation without meiosis in Arabidopsis. Nature 451: 1121–1124.

24. TiwariS, SpielmanM, SchulzR, OakeyRJ, KelseyG, et al. (2010) Transcriptional profiles underlying parent-of-origin effects in seeds of Arabidopsis thaliana. BMC Plant Biol 10: 72.

25. KinoshitaT, YadegariR, HaradaJJ, GoldbergRB, FischerRL (1999) Imprinting of the MEDEA Polycomb gene in the Arabidopsis endosperm. Plant Cell 11: 1945–1952.

26. Vielle-CalzadaJP, ThomasJ, SpillaneC, ColuccioA, HoeppnerMA, et al. (1999) Maintenance of genomic imprinting at the Arabidopsis MEDEA locus requires zygotic DDM1 activity. Genes Dev 13: 2971–2982.

27. LuoM, BilodeauP, DennisES, PeacockWJ, ChaudhuryA (2000) Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc Natl Acad Sci USA 97: 10637–10642.

28. van de RheeMD, LemmersR, BolJF (1993) Analysis of regulatory elements involved in stress-induced and organ-specific expression of tobacco acidic and basic b-1,3-glucanase genes. Plant Molecular Biology 21: 451–461.

29. HehenbergerE, KradolferD, KöhlerC (2012) Endosperm cellularization defines an important developmental transition for embryo development. Development 139: 2031–2039.

30. KangIH, SteffenJG, PortereikoMF, LloydA, DrewsGN (2008) The AGL62 MADS domain protein regulates cellularization during endosperm development in Arabidopsis. Plant Cell 20: 635–647.

31. de FolterS, ImminkRG, KiefferM, ParenicovaL, HenzSR, et al. (2005) Comprehensive interaction map of the Arabidopsis MADS Box transcription factors. Plant Cell 17: 1424–1433.

32. WolffP, WeinhoferI, SeguinJ, RoszakP, BeiselC, et al. (2011) High-Resolution Analysis of Parent-of-Origin Allelic Expression in the Arabidopsis Endosperm. PLoS Genet 7: e1002126 doi:10.1371/journal.pgen.1002126.

33. OnoderaY, HaagJR, ReamT, NunesPC, PontesO, et al. (2005) Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell 120: 613–622.

34. HerrAJ, JensenMB, DalmayT, BaulcombeDC (2005) RNA polymerase IV directs silencing of endogenous DNA. Science 308: 118–120.

35. de FolterS, AngenentGC (2006) trans meets cis in MADS science. Trends Plant Sci 11: 224–231.

36. VerelstW, SaedlerH, MunsterT (2007) MIKC* MADS-protein complexes bind motifs enriched in the proximal region of late pollen-specific Arabidopsis promoters. Plant Physiol 143: 447–460.

37. WaliaH, JosefssonC, DilkesB, KirkbrideR, HaradaJ, et al. (2009) Dosage-dependent deregulation of an AGAMOUS-LIKE gene cluster contributes to interspecific incompatibility. Curr Biol 19: 1128–1132.

38. KöhlerC, PageDR, GagliardiniV, GrossniklausU (2005) The Arabidopsis thaliana MEDEA Polycomb group protein controls expression of PHERES1 by parental imprinting. Nat Genet 37: 28–30.

39. ShirzadiR, AndersenED, BjerkanKN, GloeckleBM, HeeseM, et al. (2011) Genome-Wide Transcript Profiling of Endosperm without Paternal Contribution Identifies Parent-of-Origin-Dependent Regulation of AGAMOUS-LIKE36. PLoS Genet 7: e1001303 doi:10.1371/journal.pgen.1001303.

40. ImminkRG, TonacoIA, de FolterS, ShchennikovaA, van DijkAD, et al. (2009) SEPALLATA3: the ‘glue’ for MADS box transcription factor complex formation. Genome Biol 10: R24.

41. FavaroR, PinyopichA, BattagliaR, KooikerM, BorghiL, et al. (2003) Mads-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 15: 2603–2611.

42. PelazS, DittaGS, BaumannE, WismanE, YanofskyMF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405: 200–203.

43. HonmaT, GotoK (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409: 525–529.

44. NowackMK, GriniPE, JakobyMJ, LafosM, KonczC, et al. (2006) A positive signal from the fertilization of the egg cell sets off endosperm proliferation in angiosperm embryogenesis. Nat Genet 38: 63–67.

45. HaigD (1987) Kin conflict in seed plants. Trends Ecol Evol 2: 337–340.

46. HaigD, WestobyM (1989) Parent specific gene expression and the triploid endosperm. Am Nature 134: 147–155.

47. FriedmanW, MadridE, WilliamsJ (2008) Origin of the fittest and survival of the fittest: relating female gametophyte development to endosperm genetics. Int J Plant Sci 169: 79–92.

48. NgoQA, MooreJM, BaskarR, GrossniklausU, SundaresanV (2007) Arabidopsis GLAUCE promotes fertilization-independent endosperm development and expression of paternally inherited alleles. Development 134: 4107–4117.

49. WeinhoferI, HehenbergerE, RoszakP, HennigL, KöhlerC (2010) H3K27me3 profiling of the endosperm implies exclusion of Polycomb group protein targeting by DNA methylation. PLoS Genet 6: e1001152 doi:10.1371/journal.pgen.1001152.

50. SimonP (2003) Q-Gene: processing quantitative real-time RT-PCR data. Bioinformatics 19: 1439–1440.

51. RoszakP, KöhlerC (2011) Polycomb group proteins are required to couple seed coat initiation to fertilization. Proc Natl Acad Sci USA 20826–20831.

52. LeBH, ChengC, BuiAQ, WagmaisterJA, HenryKF, et al. (2010) Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proc Natl Acad Sci USA 107: 8063–8070.

53. RehrauerH, AquinoC, GruissemW, HenzS, HilsonP, et al. (2010) AGRONOMICS1 - A new resource for Arabidopsis transcriptome profiling. Plant Physiol 152: 487–499.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#