-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
Gene Copy-Number Polymorphism Caused by Retrotransposition in Humans
The era of whole-genome sequencing has revealed that gene copy-number changes caused by duplication and deletion events have important evolutionary, functional, and phenotypic consequences. Recent studies have therefore focused on revealing the extent of variation in copy-number within natural populations of humans and other species. These studies have found a large number of copy-number variants (CNVs) in humans, many of which have been shown to have clinical or evolutionary importance. For the most part, these studies have failed to detect an important class of gene copy-number polymorphism: gene duplications caused by retrotransposition, which result in a new intron-less copy of the parental gene being inserted into a random location in the genome. Here we describe a computational approach leveraging next-generation sequence data to detect gene copy-number variants caused by retrotransposition (retroCNVs), and we report the first genome-wide analysis of these variants in humans. We find that retroCNVs account for a substantial fraction of gene copy-number differences between any two individuals. Moreover, we show that these variants may often result in expressed chimeric transcripts, underscoring their potential for the evolution of novel gene functions. By locating the insertion sites of these duplicates, we are able to show that retroCNVs have had an important role in recent human adaptation, and we also uncover evidence that positive selection may currently be driving multiple retroCNVs toward fixation. Together these findings imply that retroCNVs are an especially important class of polymorphism, and that future studies of copy-number variation should search for these variants in order to illuminate their potential evolutionary and functional relevance.
Vyšlo v časopise: Gene Copy-Number Polymorphism Caused by Retrotransposition in Humans. PLoS Genet 9(1): e32767. doi:10.1371/journal.pgen.1003242
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003242Souhrn
The era of whole-genome sequencing has revealed that gene copy-number changes caused by duplication and deletion events have important evolutionary, functional, and phenotypic consequences. Recent studies have therefore focused on revealing the extent of variation in copy-number within natural populations of humans and other species. These studies have found a large number of copy-number variants (CNVs) in humans, many of which have been shown to have clinical or evolutionary importance. For the most part, these studies have failed to detect an important class of gene copy-number polymorphism: gene duplications caused by retrotransposition, which result in a new intron-less copy of the parental gene being inserted into a random location in the genome. Here we describe a computational approach leveraging next-generation sequence data to detect gene copy-number variants caused by retrotransposition (retroCNVs), and we report the first genome-wide analysis of these variants in humans. We find that retroCNVs account for a substantial fraction of gene copy-number differences between any two individuals. Moreover, we show that these variants may often result in expressed chimeric transcripts, underscoring their potential for the evolution of novel gene functions. By locating the insertion sites of these duplicates, we are able to show that retroCNVs have had an important role in recent human adaptation, and we also uncover evidence that positive selection may currently be driving multiple retroCNVs toward fixation. Together these findings imply that retroCNVs are an especially important class of polymorphism, and that future studies of copy-number variation should search for these variants in order to illuminate their potential evolutionary and functional relevance.
Zdroje
1. DemuthJP, De BieT, StajichJE, CristianiniN, HahnMW (2006) The evolution of mammalian gene families. PLoS ONE 1: e85 doi:10.1371/journal.pone.0000085.
2. ConradDF, PintoD, RedonR, FeukL, GokcumenO, et al. (2010) Origins and functional impact of copy number variation in the human genome. Nature 464 : 704–712.
3. DennisMY, NuttleX, SudmantPH, AntonacciF, GravesTA, et al. (2012) Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication. Cell 149 : 912–922.
4. IskowRC, GokcumenO, LeeC (2012) Exploring the role of copy number variants in human adaptation. Trends Genet 28 : 245–257.
5. GreenbergAJ, MoranJR, FangS, WuCI (2006) Adaptive loss of an old duplicated gene during incipient speciation. Mol Biol Evol 23 : 401–410.
6. LongMY, LangleyCH (1993) Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science 260 : 91–95.
7. ConantGC, WolfeKH (2008) Turning a hobby into a job: How duplicated genes find new functions. Nat Rev Genet 9 : 938–950.
8. HahnMW (2009) Distinguishing among evolutionary models for the maintenance of gene duplicates. J Hered 100 : 605–617.
9. GirirajanS, CampbellCD, EichlerEE (2011) Human copy number variation and complex genetic disease. Annu Rev Genet 45 : 203–226.
10. McCarrollSA, AltshulerDM (2007) Copy-number variation and association studies of human disease. Nat Genet 39: S37–S42.
11. StankiewiczP, LupskiJR (2010) Structural variation in the human genome and its role in disease. Annu Rev Med 437–455.
12. KiddJM, CooperGM, DonahueWF, HaydenHS, SampasN, et al. (2008) Mapping and sequencing of structural variation from eight human genomes. Nature 453 : 56–64.
13. McCarrollSA, KuruvillaFG, KornJM, CawleyS, NemeshJ, et al. (2008) Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat Genet 40 : 1166–1174.
14. RedonR, IshikawaS, FitchKR, FeukL, PerryGH, et al. (2006) Global variation in copy number in the human genome. Nature 444 : 444–454.
15. SebatJ, LakshmiB, TrogeJ, AlexanderJ, YoungJ, et al. (2004) Large-scale copy number polymorphism in the human genome. Science 305 : 525–528.
16. CarretoL, EirizMF, GomesAC, PereiraPM, SchullerD, et al. (2008) Comparative genomics of wild type yeast strains unveils important genome diversity. BMC Genomics 9 : 524.
17. EmersonJJ, Cardoso-MoreiraM, BorevitzJO, LongM (2008) Natural selection shapes genome-wide patterns of copy-number polymorphism in Drosophila melanogaster. Science 320 : 1629–1631.
18. OssowskiS, SchneebergerK, ClarkRM, LanzC, WarthmannN, et al. (2008) Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Res 18 : 2024–2033.
19. SchriderDR, HahnMW (2010) Gene copy-number polymorphism in nature. Proceedings of the Royal Society B 277 : 3213–3221.
20. BaileyJA, GuZP, ClarkRA, ReinertK, SamonteRV, et al. (2002) Recent segmental duplications in the human genome. Science 297 : 1003–1007.
21. SchriderDR, HahnMW (2010) Lower linkage disequilibrium at CNVs is due to both recurrent mutation and transposing duplications. Mol Biol Evol 27 : 103–111.
22. BrosiusJ (1991) Retroposons - seeds of evolution. Science 251 : 753–753.
23. MarquesAC, DupanloupI, VinckenboschN, ReymondA, KaessmannH (2005) Emergence of young human genes after a burst of retroposition in primates. PLoS Biol 3: e357 doi:10.1371/journal.pbio.0030357.
24. OkamuraK, NakaiK (2008) Retrotransposition as a source of new promoters. Mol Biol Evol 25 : 1231–1238.
25. BaertschR, DiekhansM, KentWJ, HausslerD, BrosiusJ (2008) Retrocopy contributions to the evolution of the human genome. BMC Genomics 9.
26. VinckenboschN, DupanloupI, KaessmannH (2006) Evolutionary fate of retroposed gene copies in the human genome. Proc Natl Acad Sci U S A 103 : 3220–3225.
27. BaiYS, CasolaC, FeschotteC, BetranE (2007) Comparative genomics reveals a constant rate of origination and convergent acquisition of functional retrogenes in Drosophila. Genome Biol 8: R11.
28. BetránE, ThorntonK, LongM (2002) Retroposed new genes out of the X in Drosophila. Genome Res 12 : 1854–1859.
29. EmersonJJ, KaessmannH, BetranE, LongMY (2004) Extensive gene traffic on the mammalian X chromosome. Science 303 : 537–540.
30. SchriderDR, StevensK, CardenoCM, LangleyCH, HahnMW (2011) Genome-wide analysis of retrogene polymorphisms in Drosophila melanogaster. Genome Res 21 : 2087–2095.
31. ChiefariE, IiritanoS, PaonessaF, Le PeraI, ArcidiaconoB, et al. (2010) Pseudogene-mediated posttranscriptional silencing of HMGA1 can result in insulin resistance and type 2 diabetes. Nat Commun 1 : 40.
32. PolisenoL, SalmenaL, ZhangJ, CarverB, HavemanWJ, et al. (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465 : 1033–1038.
33. KarakocE, AlkanC, O'RoakBJ, DennisMY, VivesL, et al. (2011) Detection of structural variants and indels within exome data. Nat Methods 9 : 176–178.
34. AltshulerDL, DurbinRM, AbecasisGR, BentleyDR, ChakravartiA, et al. (2010) A map of human genome variation from population-scale sequencing. Nature 467 : 1061–1073.
35. PotrzebowskiL, VinckenboschN, MarquesAC, ChalmelF, JegouB, et al. (2008) Chromosomal gene movements reflect the recent origin and biology of therian sex chromosomes. PLoS Biol 6: e80 doi:10.1371/journal.pbio.0060080.
36. Diaz-CastilloC, RanzJM (2012) Nuclear chromosome dynamics in the Drosophila male germ line contribute to the nonrandom genomic distribution of retrogenes. Mol Biol Evol 29 : 2105–2108.
37. GalantePAF, VidalDO, de SouzaJE, CamargoAA, de SouzaSJ (2007) Sense-antisense pairs in mammals: functional and evolutionary considerations. Genome Biol 8: R40.
38. KojimaKK, OkadaN (2009) mRNA retrotransposition coupled with 5′ inversion as a possible source of new genes. Mol Biol Evol 26 : 1405–1420.
39. RogersRL, HartlDL (2011) Chimeric genes as a source of rapid evolution in Drosophila melanogaster. Mol Biol Evol 29 : 517–529.
40. CourseauxA, NahonJL (2001) Birth of two chimeric genes in the Hominidae lineage. Science 291 : 1293–1297.
41. RogallaP, KazmierczakB, FlohrAM, HaukeS, BullerdiekJ (2000) Back to the roots of a new exon - The molecular archaeology of a SP100 splice variant. Genomics 63 : 117–122.
42. JonesCD, CusterAW, BegunDJ (2005) Origin and evolution of a chimeric fusion gene in Drosophila subobscura, D. madeirensis and D. guanche. Genetics 170 : 207–219.
43. WangW, BrunetFG, NevoE, LongM (2002) Origin of sphinx, a young chimeric RNA gene in Drosophila melanogaster. Proc Natl Acad Sci U S A 99 : 4448–4453.
44. JonesCD, BegunDJ (2005) Parallel evolution of chimeric fusion genes. Proc Natl Acad Sci U S A 102 : 11373–11378.
45. MontgomerySB, SammethM, Gutierrez-ArcelusM, LachRP, IngleC, et al. (2010) Transcriptome genetics using second generation sequencing in a Caucasian population. Nature 464 : 773–U151.
46. GalantePAF, ParmigianiRB, ZhaoQ, CaballeroOL, de SouzaJE, et al. (2011) Distinct patterns of somatic alterations in a lymphoblastoid and a tumor genome derived from the same individual. Nucleic Acids Res 39 : 6056–6068.
47. SabetiPC, VarillyP, FryB, LohmuellerJ, HostetterE, et al. (2007) Genome-wide detection and characterization of positive selection in human populations. Nature 449 : 913–918.
48. VoightBF, KudaravalliS, WenXQ, PritchardJK (2006) A map of recent positive selection in the human genome. PLoS Biol 4: e72 doi:10.1371/journal.pbio.0040072.
49. HudsonRR, KaplanNL (1986) On the divergence of alleles in nested subsamples from finite populations. Genetics 113 : 1057–1076.
50. HudsonRR (2002) Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics 18 : 337–338.
51. HudsonRR, BaileyK, SkareckyD, KwiatowskiJ, AyalaFJ (1994) Evidence for positive selection in the superoxide dismutase (Sod) region of Drosophila melanogaster. Genetics 136 : 1329–1340.
52. AnagnouNP, AntonarakisSE, ObrienSJ, ModiWS, NienhuisAW (1988) Chromosomal localization and racial distribution of the polymorphic human dihydrofolate-reductase pseudogene (DHFRPI). Am J Hum Genet 42 : 345–352.
53. McEnteeG, MinguzziS, O'BrienK, Ben LarbiN, LoscherC, et al. (2011) The former annotated human pseudogene dihydrofolate reductase-like 1 (DHFRL1) is expressed and functional. Proc Natl Acad Sci U S A 108 : 15157–15162.
54. CarioH, SmithDEC, BlomH, BlauN, BodeH, et al. (2011) Dihydrofolate reductase deficiency due to a homozygous DHFR mutation causes megaloblastic anemia and cerebral folate deficiency leading to severe neurologic disease. Am J Hum Genet 88 : 226–231.
55. UrlaubG, ChasinLA (1980) Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proc Natl Acad Sci U S A 77 : 4216–4220.
56. HawserS, LociuroS, IslamK (2006) Dihydrofolate reductase inhibitors as antibacterial agents. Biochem Pharmacol 71 : 941–948.
57. Huennekens FM (1994) The methotrexate story: A paradigm for development of cancer chemotherapeutic agents. In: Weber G, editor. Advances in Enzyme Regulation, Vol 34. pp. 397–419.
58. Cardenas-NaviaLI, CruzP, LinJC, RosenbergSA, SamuelsY, et al. (2010) Novel somatic mutations in heterotrimeric G proteins in melanoma. Cancer Biol Ther 10 : 33–37.
59. SenderekJ, BergmannC, WeberS, KetelsenUP, SchorleH, et al. (2003) Mutation of the SBF2 gene, encoding a novel member of the myotubularin family, in Charcot-Marie-Tooth neuropathy type 4B2/11p15. Hum Mol Genet 12 : 349–356.
60. FlicekP, AmodeMR, BarrellD, BealK, BrentS, et al. (2012) Ensembl 2012. Nucleic Acids Res 40: D84–D90.
61. KentWJ (2002) BLAT - The BLAST-like alignment tool. Genome Res 12 : 656–664.
62. HinrichsAS, KarolchikD, BaertschR, BarberGP, BejeranoG, et al. (2006) The UCSC Genome Browser Database: update 2006. Nucleic Acids Res 34: D590–D598.
63. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: S KSaM, editor. Methods and Protocols: Methods in Molecular Biology. Totowa, NJ: Humana Press. pp. 365–386.
64. ScheetP, StephensM (2006) A fast and flexible statistical model for large-scale population genotype data: Applications to inferring missing genotypes and haplotypic phase. Am J Hum Genet 78 : 629–644.
65. FrazerKA, BallingerDG, CoxDR, HindsDA, StuveLL, et al. (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449 : 851–861.
Štítky
Genetika Reprodukčná medicína
Článek Comparative Genome Structure, Secondary Metabolite, and Effector Coding Capacity across PathogensČlánek TATES: Efficient Multivariate Genotype-Phenotype Analysis for Genome-Wide Association StudiesČlánek Secondary Metabolism and Development Is Mediated by LlmF Control of VeA Subcellular Localization inČlánek Human Disease-Associated Genetic Variation Impacts Large Intergenic Non-Coding RNA ExpressionČlánek The Roles of Whole-Genome and Small-Scale Duplications in the Functional Specialization of GenesČlánek The Role of Autophagy in Genome Stability through Suppression of Abnormal Mitosis under Starvation
Článok vyšiel v časopisePLOS Genetics
Najčítanejšie tento týždeň
2013 Číslo 1- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
-
Všetky články tohto čísla
- A Model of High Sugar Diet-Induced Cardiomyopathy
- Comparative Genome Structure, Secondary Metabolite, and Effector Coding Capacity across Pathogens
- Emerging Function of Fat Mass and Obesity-Associated Protein (Fto)
- Positional Cloning Reveals Strain-Dependent Expression of to Alter Susceptibility to Bleomycin-Induced Pulmonary Fibrosis in Mice
- Genetics of Ribosomal Proteins: “Curiouser and Curiouser”
- Transposable Elements Re-Wire and Fine-Tune the Transcriptome
- Function and Regulation of , a Gene Implicated in Autism and Human Evolution
- MAML1 Enhances the Transcriptional Activity of Runx2 and Plays a Role in Bone Development
- Predicting Mendelian Disease-Causing Non-Synonymous Single Nucleotide Variants in Exome Sequencing Studies
- A Systematic Mapping Approach of 16q12.2/ and BMI in More Than 20,000 African Americans Narrows in on the Underlying Functional Variation: Results from the Population Architecture using Genomics and Epidemiology (PAGE) Study
- Transcription of the Major microRNA–Like Small RNAs Relies on RNA Polymerase III
- Histone H3K56 Acetylation, Rad52, and Non-DNA Repair Factors Control Double-Strand Break Repair Choice with the Sister Chromatid
- Genome-Wide Association Study Identifies a Novel Susceptibility Locus at 12q23.1 for Lung Squamous Cell Carcinoma in Han Chinese
- Genetic Disruption of the Copulatory Plug in Mice Leads to Severely Reduced Fertility
- The [] Prion Exists as a Dynamic Cloud of Variants
- Adult Onset Global Loss of the Gene Alters Body Composition and Metabolism in the Mouse
- Fis Protein Insulates the Gene from Uncontrolled Transcription
- The Meiotic Nuclear Lamina Regulates Chromosome Dynamics and Promotes Efficient Homologous Recombination in the Mouse
- Genome-Wide Haplotype Analysis of Expression Quantitative Trait Loci in Monocytes
- TATES: Efficient Multivariate Genotype-Phenotype Analysis for Genome-Wide Association Studies
- Structural Basis of a Histone H3 Lysine 4 Demethylase Required for Stem Elongation in Rice
- The Ecm11-Gmc2 Complex Promotes Synaptonemal Complex Formation through Assembly of Transverse Filaments in Budding Yeast
- MCM8 Is Required for a Pathway of Meiotic Double-Strand Break Repair Independent of DMC1 in
- Comparative Genomic Analysis of the Endosymbionts of Herbivorous Insects Reveals Eco-Environmental Adaptations: Biotechnology Applications
- Integration of Nodal and BMP Signals in the Heart Requires FoxH1 to Create Left–Right Differences in Cell Migration Rates That Direct Cardiac Asymmetry
- Pharmacodynamics, Population Dynamics, and the Evolution of Persistence in
- A Hybrid Likelihood Model for Sequence-Based Disease Association Studies
- Aberration in DNA Methylation in B-Cell Lymphomas Has a Complex Origin and Increases with Disease Severity
- Multiple Opposing Constraints Govern Chromosome Interactions during Meiosis
- Transcriptional Dynamics Elicited by a Short Pulse of Notch Activation Involves Feed-Forward Regulation by Genes
- Dynamic Large-Scale Chromosomal Rearrangements Fuel Rapid Adaptation in Yeast Populations
- Heterologous Gln/Asn-Rich Proteins Impede the Propagation of Yeast Prions by Altering Chaperone Availability
- Gene Copy-Number Polymorphism Caused by Retrotransposition in Humans
- An Incompatibility between a Mitochondrial tRNA and Its Nuclear-Encoded tRNA Synthetase Compromises Development and Fitness in
- Secondary Metabolism and Development Is Mediated by LlmF Control of VeA Subcellular Localization in
- Single-Stranded Annealing Induced by Re-Initiation of Replication Origins Provides a Novel and Efficient Mechanism for Generating Copy Number Expansion via Non-Allelic Homologous Recombination
- Tbx2 Controls Lung Growth by Direct Repression of the Cell Cycle Inhibitor Genes and
- Suv4-20h Histone Methyltransferases Promote Neuroectodermal Differentiation by Silencing the Pluripotency-Associated Oct-25 Gene
- A Conserved Helicase Processivity Factor Is Needed for Conjugation and Replication of an Integrative and Conjugative Element
- Telomerase-Null Survivor Screening Identifies Novel Telomere Recombination Regulators
- Genome-Wide Analysis Reveals Selection for Important Traits in Domestic Horse Breeds
- Coordinated Degradation of Replisome Components Ensures Genome Stability upon Replication Stress in the Absence of the Replication Fork Protection Complex
- Nkx6.1 Controls a Gene Regulatory Network Required for Establishing and Maintaining Pancreatic Beta Cell Identity
- HIF- and Non-HIF-Regulated Hypoxic Responses Require the Estrogen-Related Receptor in
- Delineating a Conserved Genetic Cassette Promoting Outgrowth of Body Appendages
- The Telomere Capping Complex CST Has an Unusual Stoichiometry, Makes Multipartite Interaction with G-Tails, and Unfolds Higher-Order G-Tail Structures
- Comprehensive Methylome Characterization of and at Single-Base Resolution
- Loci Associated with -Glycosylation of Human Immunoglobulin G Show Pleiotropy with Autoimmune Diseases and Haematological Cancers
- Switchgrass Genomic Diversity, Ploidy, and Evolution: Novel Insights from a Network-Based SNP Discovery Protocol
- Centromere-Like Regions in the Budding Yeast Genome
- Sequencing of Loci from the Elephant Shark Reveals a Family of Genes in Vertebrate Genomes, Forged by Ancient Duplications and Divergences
- Mendelian and Non-Mendelian Regulation of Gene Expression in Maize
- Mutational Spectrum Drives the Rise of Mutator Bacteria
- Human Disease-Associated Genetic Variation Impacts Large Intergenic Non-Coding RNA Expression
- The Roles of Whole-Genome and Small-Scale Duplications in the Functional Specialization of Genes
- Sex-Specific Signaling in the Blood–Brain Barrier Is Required for Male Courtship in
- A Newly Uncovered Group of Distantly Related Lysine Methyltransferases Preferentially Interact with Molecular Chaperones to Regulate Their Activity
- Is Required for Leptin-Mediated Depolarization of POMC Neurons in the Hypothalamic Arcuate Nucleus in Mice
- Unlocking the Bottleneck in Forward Genetics Using Whole-Genome Sequencing and Identity by Descent to Isolate Causative Mutations
- The Role of Autophagy in Genome Stability through Suppression of Abnormal Mitosis under Starvation
- MTERF3 Regulates Mitochondrial Ribosome Biogenesis in Invertebrates and Mammals
- Downregulation and Altered Splicing by in a Mouse Model of Facioscapulohumeral Muscular Dystrophy (FSHD)
- NBR1-Mediated Selective Autophagy Targets Insoluble Ubiquitinated Protein Aggregates in Plant Stress Responses
- Retroactive Maintains Cuticle Integrity by Promoting the Trafficking of Knickkopf into the Procuticle of
- Phenome-Wide Association Study (PheWAS) for Detection of Pleiotropy within the Population Architecture using Genomics and Epidemiology (PAGE) Network
- Genetic and Functional Modularity of Activities in the Specification of Limb-Innervating Motor Neurons
- A Population Genetic Model for the Maintenance of R2 Retrotransposons in rRNA Gene Loci
- A Quartet of PIF bHLH Factors Provides a Transcriptionally Centered Signaling Hub That Regulates Seedling Morphogenesis through Differential Expression-Patterning of Shared Target Genes in
- A Genome-Wide Integrative Genomic Study Localizes Genetic Factors Influencing Antibodies against Epstein-Barr Virus Nuclear Antigen 1 (EBNA-1)
- Mutation of the Diamond-Blackfan Anemia Gene in Mouse Results in Morphological and Neuroanatomical Phenotypes
- Life, the Universe, and Everything: An Interview with David Haussler
- Alternative Oxidase Expression in the Mouse Enables Bypassing Cytochrome Oxidase Blockade and Limits Mitochondrial ROS Overproduction
- An Evolutionarily Conserved Synthetic Lethal Interaction Network Identifies FEN1 as a Broad-Spectrum Target for Anticancer Therapeutic Development
- The Flowering Repressor Underlies a Novel QTL Interacting with the Genetic Background
- Telomerase Is Required for Zebrafish Lifespan
- and Diversified Expression of the Gene Family Bolster the Floral Stem Cell Network
- Susceptibility Loci Associated with Specific and Shared Subtypes of Lymphoid Malignancies
- An Insertion in 5′ Flanking Region of Causes Blue Eggshell in the Chicken
- Increased Maternal Genome Dosage Bypasses the Requirement of the FIS Polycomb Repressive Complex 2 in Arabidopsis Seed Development
- WNK1/HSN2 Mutation in Human Peripheral Neuropathy Deregulates Expression and Posterior Lateral Line Development in Zebrafish ()
- Synergistic Interaction of Rnf8 and p53 in the Protection against Genomic Instability and Tumorigenesis
- Dot1-Dependent Histone H3K79 Methylation Promotes Activation of the Mek1 Meiotic Checkpoint Effector Kinase by Regulating the Hop1 Adaptor
- A Heterogeneous Mixture of F-Series Prostaglandins Promotes Sperm Guidance in the Reproductive Tract
- Starvation, Together with the SOS Response, Mediates High Biofilm-Specific Tolerance to the Fluoroquinolone Ofloxacin
- Directed Evolution of a Model Primordial Enzyme Provides Insights into the Development of the Genetic Code
- Genome-Wide Screens for Tinman Binding Sites Identify Cardiac Enhancers with Diverse Functional Architectures
- PLOS Genetics
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- Function and Regulation of , a Gene Implicated in Autism and Human Evolution
- An Insertion in 5′ Flanking Region of Causes Blue Eggshell in the Chicken
- Comprehensive Methylome Characterization of and at Single-Base Resolution
- Susceptibility Loci Associated with Specific and Shared Subtypes of Lymphoid Malignancies
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy