-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
Single-Stranded Annealing Induced by Re-Initiation of Replication Origins Provides a Novel and Efficient Mechanism for Generating Copy Number Expansion via Non-Allelic Homologous Recombination
Copy number expansions such as amplifications and duplications contribute to human phenotypic variation, promote molecular diversification during evolution, and drive the initiation and/or progression of various cancers. The mechanisms underlying these copy number changes are still incompletely understood, however. We recently demonstrated that transient, limited re-replication from a single origin in Saccharomyces cerevisiae efficiently induces segmental amplification of the re-replicated region. Structural analyses of such re-replication induced gene amplifications (RRIGA) suggested that RRIGA could provide a new mechanism for generating copy number variation by non-allelic homologous recombination (NAHR). Here we elucidate this new mechanism and provide insight into why it is so efficient. We establish that sequence homology is both necessary and sufficient for repetitive elements to participate in RRIGA and show that their recombination occurs by a single-strand annealing (SSA) mechanism. We also find that re-replication forks are prone to breakage, accounting for the widespread DNA damage associated with deregulation of replication proteins. These breaks appear to stimulate NAHR between re-replicated repeat sequences flanking a re-initiating replication origin. Our results support a RRIGA model where the expansion of a re-replication bubble beyond flanking homologous sequences followed by breakage at both forks in trans provides an ideal structural context for SSA–mediated NAHR to form a head-to-tail duplication. Given the remarkable efficiency of RRIGA, we suggest it may be an unappreciated contributor to copy number expansions in both disease and evolution.
Vyšlo v časopise: Single-Stranded Annealing Induced by Re-Initiation of Replication Origins Provides a Novel and Efficient Mechanism for Generating Copy Number Expansion via Non-Allelic Homologous Recombination. PLoS Genet 9(1): e32767. doi:10.1371/journal.pgen.1003192
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003192Souhrn
Copy number expansions such as amplifications and duplications contribute to human phenotypic variation, promote molecular diversification during evolution, and drive the initiation and/or progression of various cancers. The mechanisms underlying these copy number changes are still incompletely understood, however. We recently demonstrated that transient, limited re-replication from a single origin in Saccharomyces cerevisiae efficiently induces segmental amplification of the re-replicated region. Structural analyses of such re-replication induced gene amplifications (RRIGA) suggested that RRIGA could provide a new mechanism for generating copy number variation by non-allelic homologous recombination (NAHR). Here we elucidate this new mechanism and provide insight into why it is so efficient. We establish that sequence homology is both necessary and sufficient for repetitive elements to participate in RRIGA and show that their recombination occurs by a single-strand annealing (SSA) mechanism. We also find that re-replication forks are prone to breakage, accounting for the widespread DNA damage associated with deregulation of replication proteins. These breaks appear to stimulate NAHR between re-replicated repeat sequences flanking a re-initiating replication origin. Our results support a RRIGA model where the expansion of a re-replication bubble beyond flanking homologous sequences followed by breakage at both forks in trans provides an ideal structural context for SSA–mediated NAHR to form a head-to-tail duplication. Given the remarkable efficiency of RRIGA, we suggest it may be an unappreciated contributor to copy number expansions in both disease and evolution.
Zdroje
1. Ohno S (1970) Evolution by gene duplication. Springer-Verlag. 184 p.
2. SimmonsAD, CarvalhoCMB, LupskiJR (2012) What have studies of genomic disorders taught us about our genome? Methods Mol Biol 838 : 1–27 doi:10.1007/978-1-61779-507-7_1.
3. BeroukhimR, MermelCH, PorterD, WeiG, RaychaudhuriS, et al. (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463 : 899–905 doi:10.1038/nature08822.
4. SantariusT, ShipleyJ, BrewerD, StrattonMR, CooperCS (2010) A census of amplified and overexpressed human cancer genes. Nat Rev Cancer 10 : 59–64 doi:10.1038/nrc2771.
5. GirirajanS, CampbellCD, EichlerEE (2011) Human copy number variation and complex genetic disease. Annu Rev Genet 45 : 203–226 doi:10.1146/annurev-genet-102209-163544.
6. VenterJC, AdamsMD, MyersEW, LiPW, MuralRJ, et al. (2001) The sequence of the human genome. Science 291 : 1304–1351 doi:10.1126/science.1058040.
7. LanderES, LintonLM, BirrenB, NusbaumC, ZodyMC, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409 : 860–921 doi:10.1038/35057062.
8. LevyS, SuttonG, NgPC, FeukL, HalpernAL, et al. (2007) The diploid genome sequence of an individual human. PLoS Biol 5: e254 doi:10.1371/journal.pbio.0050254.
9. ChenJ-M, CooperDN, FérecC, Kehrer-SawatzkiH, PatrinosGP (2010) Genomic rearrangements in inherited disease and cancer. Semin Cancer Biol 20 : 222–233 doi:10.1016/j.semcancer.2010.05.007.
10. HoangML, TanFJ, LaiDC, CelnikerSE, HoskinsRA, et al. (2010) Competitive repair by naturally dispersed repetitive DNA during non-allelic homologous recombination. PLoS Genet 6: e1001228 doi:10.1371/journal.pgen.1001228.
11. HastingsPJ, LupskiJR, RosenbergSM, IraG (2009) Mechanisms of change in gene copy number. Nat Rev Genet 10 : 551–564 doi:10.1038/nrg2593.
12. SzostakJW, WuR (1980) Unequal crossing over in the ribosomal DNA of Saccharomyces cerevisiae. Nature 284 : 426–430 doi:10.1038/284426a0.
13. PetesTD (1980) Unequal meiotic recombination within tandem arrays of yeast ribosomal DNA genes. Cell 19 : 765–774 doi:10.1016/S0092-8674(80)80052-3.
14. WelchJW, MaloneyDH, FogelS (1990) Unequal crossing-over and gene conversion at the amplified CUP1 locus of yeast. Mol Gen Genet 222 : 304–310 doi:10.1007/BF00633833.
15. LouisEJ, HaberJE (1990) Mitotic recombination among subtelomeric Y′ repeats in Saccharomyces cerevisiae. Genetics 124 : 547–559.
16. LiuP, CarvalhoCM, HastingsP, LupskiJR (2012) Mechanisms for recurrent and complex human genomic rearrangements. Current Opinion in Genetics & Development 22 : 211–220 doi:10.1016/j.gde.2012.02.012.
17. PayenC, KoszulR, DujonB, FischerG (2008) Segmental duplications arise from Pol32-dependent repair of broken forks through two alternative replication-based mechanisms. PLoS Genet 4: e1000175 doi:10.1371/journal.pgen.1000175.
18. GreenBM, FinnKJ, LiJJ (2010) Loss of DNA replication control is a potent inducer of gene amplification. Science 329 : 943–946 doi:10.1126/science.1190966.
19. AriasEE, WalterJC (2007) Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev 21 : 497–518 doi:10.1101/gad.1508907.
20. DiffleyJFX (2011) Quality control in the initiation of eukaryotic DNA replication. Philos Trans R Soc Lond, B, Biol Sci 366 : 3545–3553 doi:10.1098/rstb.2011.0073.
21. NguyenVQ, CoC, LiJJ (2001) Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms. Nature 411 : 1068–1073 doi:10.1038/35082600.
22. WilmesGM, ArchambaultV, AustinRJ, JacobsonMD, BellSP, et al. (2004) Interaction of the S-phase cyclin Clb5 with an “RXL” docking sequence in the initiator protein Orc6 provides an origin-localized replication control switch. Genes Dev 18 : 981–991 doi:10.1101/gad.1202304.
23. GreenBM, MorrealeRJ, OzaydinB, DerisiJL, LiJJ (2006) Genome-wide mapping of DNA synthesis in Saccharomyces cerevisiae reveals that mechanisms preventing reinitiation of DNA replication are not redundant. Mol Biol Cell 17 : 2401–2414 doi:10.1091/mbc.E05-11-1043.
24. GreenBM, LiJJ (2005) Loss of rereplication control in Saccharomyces cerevisiae results in extensive DNA damage. Mol Biol Cell 16 : 421–432 doi:10.1091/mbc.E04-09-0833.
25. MelixetianM, BallabeniA, MasieroL, GaspariniP, ZamponiR, et al. (2004) Loss of Geminin induces rereplication in the presence of functional p53. J Cell Biol 165 : 473–482 doi:10.1083/jcb.200403106.
26. ArchambaultV, IkuiAE, DrapkinBJ, CrossFR (2005) Disruption of mechanisms that prevent rereplication triggers a DNA damage response. Mol Cell Biol 25 : 6707–6721 doi:10.1128/MCB.25.15.6707-6721.2005.
27. VaziriC, SaxenaS, JeonY, LeeC, MurataK, et al. (2003) A p53-dependent checkpoint pathway prevents rereplication. Mol Cell 11 : 997–1008 doi:10.1016/S1097-2765(03)00099-6.
28. LovejoyCA, LockK, YenamandraA, CortezD (2006) DDB1 maintains genome integrity through regulation of Cdt1. Mol Cell Biol 26 : 7977–7990 doi:10.1128/MCB.00819-06.
29. JinJ, AriasEE, ChenJ, HarperJW, WalterJC (2006) A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol Cell 23 : 709–721 doi:10.1016/j.molcel.2006.08.010.
30. ZhuW, DuttaA (2006) An ATR - and BRCA1-mediated Fanconi anemia pathway is required for activating the G2/M checkpoint and DNA damage repair upon rereplication. Mol Cell Biol 26 : 4601–4611 doi:10.1128/MCB.02141-05.
31. ZhuW, ChenY, DuttaA (2004) Rereplication by depletion of geminin is seen regardless of p53 status and activates a G2/M checkpoint. Mol Cell Biol 24 : 7140–7150 doi:10.1128/MCB.24.16.7140-7150.2004.
32. MieczkowskiPA, LemoineFJ, PetesTD (2006) Recombination between retrotransposons as a source of chromosome rearrangements in the yeast Saccharomyces cerevisiae. DNA Repair (Amst) 5 : 1010–1020 doi:10.1016/j.dnarep.2006.05.027.
33. DeshpandeAM, NewlonCS (1996) DNA replication fork pause sites dependent on transcription. Science 272 : 1030–1033 doi:10.1126/science.272.5264.1030.
34. VoineaguI, NarayananV, LobachevKS, MirkinSM (2008) Replication stalling at unstable inverted repeats: interplay between DNA hairpins and fork stabilizing proteins. Proc Natl Acad Sci USA 105 : 9936–9941 doi:10.1073/pnas.0804510105.
35. KoshlandD, KentJC, HartwellLH (1985) Genetic analysis of the mitotic transmission of minichromosomes. Cell 40 : 393–403 doi:10.1016/0092-8674(85)90153-9.
36. RichardG-F, KerrestA, DujonB (2008) Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev 72 : 686–727 doi:10.1128/MMBR.00011-08.
37. PâquesF, HaberJE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63 : 349–404.
38. McEachernMJ, HaberJE (2006) Break-induced replication and recombinational telomere elongation in yeast. Annu Rev Biochem 75 : 111–135 doi:10.1146/annurev.biochem.74.082803.133234.
39. IraG, HaberJE (2002) Characterization of RAD51-independent break-induced replication that acts preferentially with short homologous sequences. Mol Cell Biol 22 : 6384–6392 doi:10.1128/MCB.22.18.6384-6392.2002.
40. SymingtonLS (2002) Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 66 : 630–670 doi:10.1128/MMBR.66.4.630-670.2002.
41. LeS, MooreJK, HaberJE, GreiderCW (1999) RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics 152 : 143–152.
42. DavisAP, SymingtonLS (2004) RAD51-dependent break-induced replication in yeast. Mol Cell Biol 24 : 2344–2351 doi:10.1128/MCB.24.6.2344-2351.2004.
43. IvanovEL, SugawaraN, Fishman-LobellJ, HaberJE (1996) Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae. Genetics 142 : 693–704.
44. SugawaraN, IraG, HaberJE (2000) DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair. Mol Cell Biol 20 : 5300–5309 doi:10.1128/MCB.20.14.5300-5309.2000.
45. SugawaraN, PâquesF, ColaiácovoM, HaberJE (1997) Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination. Proc Natl Acad Sci USA 94 : 9214–9219.
46. Fishman-LobellJ, HaberJE (1992) Removal of nonhomologous DNA ends in double-strand break recombination: the role of the yeast ultraviolet repair gene RAD1. Science 258 : 480–484 doi:10.1126/science.1411547.
47. LyndakerAM, AlaniE (2009) A tale of tails: insights into the coordination of 3′ end processing during homologous recombination. Bioessays 31 : 315–321 doi:10.1002/bies.200800195.
48. LydeardJR, JainS, YamaguchiM, HaberJE (2007) Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature 448 : 820–823 doi:10.1038/nature06047.
49. ZhuZ, ChungW-H, ShimEY, LeeSE, IraG (2008) Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134 : 981–994 doi:10.1016/j.cell.2008.08.037.
50. RomeroD, PalaciosR (1997) Gene amplification and genomic plasticity in prokaryotes. Annu Rev Genet 31 : 91–111 doi:10.1146/annurev.genet.31.1.91.
51. DavidsonIF, LiA, BlowJJ (2006) Deregulated replication licensing causes DNA fragmentation consistent with head-to-tail fork collision. Mol Cell 24 : 433–443 doi:10.1016/j.molcel.2006.09.010.
52. CarrAM, PaekAL, WeinertT (2011) DNA replication: failures and inverted fusions. Semin Cell Dev Biol 22 : 866–874 doi:10.1016/j.semcdb.2011.10.008.
53. LabibK, HodgsonB (2007) Replication fork barriers: pausing for a break or stalling for time? EMBO Rep 8 : 346–353 doi:10.1038/sj.embor.7400940.
54. MirkinEV, MirkinSM (2007) Replication fork stalling at natural impediments. Microbiol Mol Biol Rev 71 : 13–35 doi:10.1128/MMBR.00030-06.
55. ArguesoJL, WestmorelandJ, MieczkowskiPA, GawelM, PetesTD, et al. (2008) Double-strand breaks associated with repetitive DNA can reshape the genome. Proc Natl Acad Sci USA 105 : 11845–11850 doi:10.1073/pnas.0804529105.
56. DebatisseM, MalfoyB (2005) Gene amplification mechanisms. Adv Exp Med Biol 570 : 343–361 doi:10.1007/1-4020-3764-3_12.
57. McClintockB (1942) The Fusion of Broken Ends of Chromosomes Following Nuclear Fusion. Proc Natl Acad Sci USA 28 : 458–463.
58. NarayananV, MieczkowskiPA, KimH-M, PetesTD, LobachevKS (2006) The pattern of gene amplification is determined by the chromosomal location of hairpin-capped breaks. Cell 125 : 1283–1296 doi:10.1016/j.cell.2006.04.042.
59. VanHulleK, LemoineFJ, NarayananV, DowningB, HullK, et al. (2007) Inverted DNA repeats channel repair of distant double-strand breaks into chromatid fusions and chromosomal rearrangements. Mol Cell Biol 27 : 2601–2614 doi:10.1128/MCB.01740-06.
60. DershowitzA, SnyderM, SbiaM, SkurnickJH, OngLY, et al. (2007) Linear derivatives of Saccharomyces cerevisiae chromosome III can be maintained in the absence of autonomously replicating sequence elements. Mol Cell Biol 27 : 4652–4663 doi:10.1128/MCB.01246-06.
61. BlowJJ, GeXQ (2009) A model for DNA replication showing how dormant origins safeguard against replication fork failure. EMBO Rep 10 : 406–412 doi:10.1038/embor.2009.5.
62. AguileraA, Gómez-GonzálezB (2008) Genome instability: a mechanistic view of its causes and consequences. Nat Rev Genet 9 : 204–217 doi:10.1038/nrg2268.
63. KolodnerRD, PutnamCD, MyungK (2002) Maintenance of genome stability in Saccharomyces cerevisiae. Science 297 : 552–557 doi:10.1126/science.1075277.
64. WeinertT, KaocharS, JonesH, PaekA, ClarkAJ (2009) The replication fork's five degrees of freedom, their failure and genome rearrangements. Curr Opin Cell Biol 21 : 778–784 doi:10.1016/j.ceb.2009.10.004.
65. DebatisseM, Le TallecB, LetessierA, DutrillauxB, BrisonO (2012) Common fragile sites: mechanisms of instability revisited. Trends Genet 28 : 22–32 doi:10.1016/j.tig.2011.10.003.
66. DurkinSG, GloverTW (2007) Chromosome fragile sites. Annu Rev Genet 41 : 169–192 doi:10.1146/annurev.genet.41.042007.165900.
67. CoquelleA, PipirasE, ToledoF, ButtinG, DebatisseM (1997) Expression of fragile sites triggers intrachromosomal mammalian gene amplification and sets boundaries to early amplicons. Cell 89 : 215–225 doi:10.1016/S0092-8674(00)80201-9.
68. HellmanA, ZlotorynskiE, SchererSW, CheungJ, VincentJB, et al. (2002) A role for common fragile site induction in amplification of human oncogenes. Cancer Cell 1 : 89–97 doi:10.1016/S1535-6108(02)00017-X.
69. CiulloM, DebilyM-A, RozierL, AutieroM, BillaultA, et al. (2002) Initiation of the breakage-fusion-bridge mechanism through common fragile site activation in human breast cancer cells: the model of PIP gene duplication from a break at FRA7I. Hum Mol Genet 11 : 2887–2894 doi:10.1093/hmg/11.23.2887.
70. McCuneHJ, DanielsonLS, AlvinoGM, CollingwoodD, DelrowJJ, et al. (2008) The temporal program of chromosome replication: genomewide replication in clb5{Delta} Saccharomyces cerevisiae. Genetics 180 : 1833–1847 doi:10.1534/genetics.108.094359.
71. MillsRE, WalterK, StewartC, HandsakerRE, ChenK, et al. (2011) Mapping copy number variation by population-scale genome sequencing. Nature 470 : 59–65 doi:10.1038/nature09708.
72. McBrideDJ, EtemadmoghadamD, CookeSL, AlsopK, GeorgeJ, et al. (2012) Tandem duplication of chromosomal segments is common in ovarian and breast cancer genomes. J Pathol 227 : 446–455 doi:10.1002/path.4042.
73. HahnPJ (1993) Molecular biology of double-minute chromosomes. Bioessays 15 : 477–484 doi:10.1002/bies.950150707.
74. MurrayAW, SzostakJW (1983) Pedigree analysis of plasmid segregation in yeast. Cell 34 : 961–970 doi:10.1016/0092-8674(83)90553-6.
75. LibudaDE, WinstonF (2006) Amplification of histone genes by circular chromosome formation in Saccharomyces cerevisiae. Nature 443 : 1003–1007 doi:10.1038/nature05205.
76. BondsL, BakerP, GupC, ShroyerKR (2002) Immunohistochemical localization of cdc6 in squamous and glandular neoplasia of the uterine cervix. Arch Pathol Lab Med 126 : 1164–1168 doi:10.1043/0003-9985(2002)126<1164:ILOCIS>2.0.CO;2.
77. BorladoLR, MéndezJ (2008) CDC6: from DNA replication to cell cycle checkpoints and oncogenesis. Carcinogenesis 29 : 237–243 doi:10.1093/carcin/bgm268.
78. KarakaidosP, TaravirasS, VassiliouLV, ZacharatosP, KastrinakisNG, et al. (2004) Overexpression of the replication licensing regulators hCdt1 and hCdc6 characterizes a subset of non-small-cell lung carcinomas: synergistic effect with mutant p53 on tumor growth and chromosomal instability–evidence of E2F-1 transcriptional control over hCdt1. Am J Pathol 165 : 1351–1365 doi:10.1016/S0002-9440(10)63393-7.
79. MurphyN, RingM, HeffronCCBB, KingB, KillaleaAG, et al. (2005) p16INK4A, CDC6, and MCM5: predictive biomarkers in cervical preinvasive neoplasia and cervical cancer. J Clin Pathol 58 : 525–534 doi:10.1136/jcp.2004.018895.
80. RenB, YuG, TsengGC, CieplyK, GavelT, et al. (2006) MCM7 amplification and overexpression are associated with prostate cancer progression. Oncogene 25 : 1090–1098 doi:10.1038/sj.onc.1209134.
81. LiontosM, KoutsamiM, SideridouM, EvangelouK, KletsasD, et al. (2007) Deregulated overexpression of hCdt1 and hCdc6 promotes malignant behavior. Cancer Res 67 : 10899–10909 doi:10.1158/0008-5472.CAN-07-2837.
82. ArentsonE, FaloonP, SeoJ, MoonE, StudtsJM, et al. (2002) Oncogenic potential of the DNA replication licensing protein CDT1. Oncogene 21 : 1150–1158 doi:10.1038/sj.onc.1205175.
83. SeoJ, ChungYS, SharmaGG, MoonE, BurackWR, et al. (2005) Cdt1 transgenic mice develop lymphoblastic lymphoma in the absence of p53. Oncogene 24 : 8176–8186 doi:10.1038/sj.onc.1208881.
84. KuwaharaY, TanabeC, IkeuchiT, AoyagiK, NishigakiM, et al. (2004) Alternative mechanisms of gene amplification in human cancers. Genes Chromosomes Cancer 41 : 125–132 doi:10.1002/gcc.20075.
85. HerrickJ, ContiC, TeissierS, ThierryF, CouturierJ, et al. (2005) Genomic organization of amplified MYC genes suggests distinct mechanisms of amplification in tumorigenesis. Cancer Res 65 : 1174–1179 doi:10.1158/0008-5472.CAN-04-2802.
86. O'NeilJ, TchindaJ, GutierrezA, MoreauL, MaserRS, et al. (2007) Alu elements mediate MYB gene tandem duplication in human T-ALL. J Exp Med 204 : 3059–3066 doi:10.1084/jem.20071637.
87. StroutMP, MarcucciG, BloomfieldCD, CaligiuriMA (1998) The partial tandem duplication of ALL1 (MLL) is consistently generated by Alu-mediated homologous recombination in acute myeloid leukemia. Proc Natl Acad Sci USA 95 : 2390–2395.
88. Di MiccoR, FumagalliM, CicaleseA, PiccininS, GaspariniP, et al. (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444 : 638–642 doi:10.1038/nature05327.
89. BartkovaJ, RezaeiN, LiontosM, KarakaidosP, KletsasD, et al. (2006) Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444 : 633–637 doi:10.1038/nature05268.
90. Dominguez-SolaD, YingCY, GrandoriC, RuggieroL, ChenB, et al. (2007) Non-transcriptional control of DNA replication by c-Myc. Nature 448 : 445–451 doi:10.1038/nature05953.
91. HalazonetisTD, GorgoulisVG, BartekJ (2008) An oncogene-induced DNA damage model for cancer development. Science 319 : 1352–1355 doi:10.1126/science.1140735.
92. HoffmanCS, WinstonF (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57 : 267–272.
Štítky
Genetika Reprodukčná medicína
Článek Comparative Genome Structure, Secondary Metabolite, and Effector Coding Capacity across PathogensČlánek TATES: Efficient Multivariate Genotype-Phenotype Analysis for Genome-Wide Association StudiesČlánek Secondary Metabolism and Development Is Mediated by LlmF Control of VeA Subcellular Localization inČlánek Human Disease-Associated Genetic Variation Impacts Large Intergenic Non-Coding RNA ExpressionČlánek The Roles of Whole-Genome and Small-Scale Duplications in the Functional Specialization of GenesČlánek The Role of Autophagy in Genome Stability through Suppression of Abnormal Mitosis under Starvation
Článok vyšiel v časopisePLOS Genetics
Najčítanejšie tento týždeň
2013 Číslo 1- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
-
Všetky články tohto čísla
- A Model of High Sugar Diet-Induced Cardiomyopathy
- Comparative Genome Structure, Secondary Metabolite, and Effector Coding Capacity across Pathogens
- Emerging Function of Fat Mass and Obesity-Associated Protein (Fto)
- Positional Cloning Reveals Strain-Dependent Expression of to Alter Susceptibility to Bleomycin-Induced Pulmonary Fibrosis in Mice
- Genetics of Ribosomal Proteins: “Curiouser and Curiouser”
- Transposable Elements Re-Wire and Fine-Tune the Transcriptome
- Function and Regulation of , a Gene Implicated in Autism and Human Evolution
- MAML1 Enhances the Transcriptional Activity of Runx2 and Plays a Role in Bone Development
- Predicting Mendelian Disease-Causing Non-Synonymous Single Nucleotide Variants in Exome Sequencing Studies
- A Systematic Mapping Approach of 16q12.2/ and BMI in More Than 20,000 African Americans Narrows in on the Underlying Functional Variation: Results from the Population Architecture using Genomics and Epidemiology (PAGE) Study
- Transcription of the Major microRNA–Like Small RNAs Relies on RNA Polymerase III
- Histone H3K56 Acetylation, Rad52, and Non-DNA Repair Factors Control Double-Strand Break Repair Choice with the Sister Chromatid
- Genome-Wide Association Study Identifies a Novel Susceptibility Locus at 12q23.1 for Lung Squamous Cell Carcinoma in Han Chinese
- Genetic Disruption of the Copulatory Plug in Mice Leads to Severely Reduced Fertility
- The [] Prion Exists as a Dynamic Cloud of Variants
- Adult Onset Global Loss of the Gene Alters Body Composition and Metabolism in the Mouse
- Fis Protein Insulates the Gene from Uncontrolled Transcription
- The Meiotic Nuclear Lamina Regulates Chromosome Dynamics and Promotes Efficient Homologous Recombination in the Mouse
- Genome-Wide Haplotype Analysis of Expression Quantitative Trait Loci in Monocytes
- TATES: Efficient Multivariate Genotype-Phenotype Analysis for Genome-Wide Association Studies
- Structural Basis of a Histone H3 Lysine 4 Demethylase Required for Stem Elongation in Rice
- The Ecm11-Gmc2 Complex Promotes Synaptonemal Complex Formation through Assembly of Transverse Filaments in Budding Yeast
- MCM8 Is Required for a Pathway of Meiotic Double-Strand Break Repair Independent of DMC1 in
- Comparative Genomic Analysis of the Endosymbionts of Herbivorous Insects Reveals Eco-Environmental Adaptations: Biotechnology Applications
- Integration of Nodal and BMP Signals in the Heart Requires FoxH1 to Create Left–Right Differences in Cell Migration Rates That Direct Cardiac Asymmetry
- Pharmacodynamics, Population Dynamics, and the Evolution of Persistence in
- A Hybrid Likelihood Model for Sequence-Based Disease Association Studies
- Aberration in DNA Methylation in B-Cell Lymphomas Has a Complex Origin and Increases with Disease Severity
- Multiple Opposing Constraints Govern Chromosome Interactions during Meiosis
- Transcriptional Dynamics Elicited by a Short Pulse of Notch Activation Involves Feed-Forward Regulation by Genes
- Dynamic Large-Scale Chromosomal Rearrangements Fuel Rapid Adaptation in Yeast Populations
- Heterologous Gln/Asn-Rich Proteins Impede the Propagation of Yeast Prions by Altering Chaperone Availability
- Gene Copy-Number Polymorphism Caused by Retrotransposition in Humans
- An Incompatibility between a Mitochondrial tRNA and Its Nuclear-Encoded tRNA Synthetase Compromises Development and Fitness in
- Secondary Metabolism and Development Is Mediated by LlmF Control of VeA Subcellular Localization in
- Single-Stranded Annealing Induced by Re-Initiation of Replication Origins Provides a Novel and Efficient Mechanism for Generating Copy Number Expansion via Non-Allelic Homologous Recombination
- Tbx2 Controls Lung Growth by Direct Repression of the Cell Cycle Inhibitor Genes and
- Suv4-20h Histone Methyltransferases Promote Neuroectodermal Differentiation by Silencing the Pluripotency-Associated Oct-25 Gene
- A Conserved Helicase Processivity Factor Is Needed for Conjugation and Replication of an Integrative and Conjugative Element
- Telomerase-Null Survivor Screening Identifies Novel Telomere Recombination Regulators
- Genome-Wide Analysis Reveals Selection for Important Traits in Domestic Horse Breeds
- Coordinated Degradation of Replisome Components Ensures Genome Stability upon Replication Stress in the Absence of the Replication Fork Protection Complex
- Nkx6.1 Controls a Gene Regulatory Network Required for Establishing and Maintaining Pancreatic Beta Cell Identity
- HIF- and Non-HIF-Regulated Hypoxic Responses Require the Estrogen-Related Receptor in
- Delineating a Conserved Genetic Cassette Promoting Outgrowth of Body Appendages
- The Telomere Capping Complex CST Has an Unusual Stoichiometry, Makes Multipartite Interaction with G-Tails, and Unfolds Higher-Order G-Tail Structures
- Comprehensive Methylome Characterization of and at Single-Base Resolution
- Loci Associated with -Glycosylation of Human Immunoglobulin G Show Pleiotropy with Autoimmune Diseases and Haematological Cancers
- Switchgrass Genomic Diversity, Ploidy, and Evolution: Novel Insights from a Network-Based SNP Discovery Protocol
- Centromere-Like Regions in the Budding Yeast Genome
- Sequencing of Loci from the Elephant Shark Reveals a Family of Genes in Vertebrate Genomes, Forged by Ancient Duplications and Divergences
- Mendelian and Non-Mendelian Regulation of Gene Expression in Maize
- Mutational Spectrum Drives the Rise of Mutator Bacteria
- Human Disease-Associated Genetic Variation Impacts Large Intergenic Non-Coding RNA Expression
- The Roles of Whole-Genome and Small-Scale Duplications in the Functional Specialization of Genes
- Sex-Specific Signaling in the Blood–Brain Barrier Is Required for Male Courtship in
- A Newly Uncovered Group of Distantly Related Lysine Methyltransferases Preferentially Interact with Molecular Chaperones to Regulate Their Activity
- Is Required for Leptin-Mediated Depolarization of POMC Neurons in the Hypothalamic Arcuate Nucleus in Mice
- Unlocking the Bottleneck in Forward Genetics Using Whole-Genome Sequencing and Identity by Descent to Isolate Causative Mutations
- The Role of Autophagy in Genome Stability through Suppression of Abnormal Mitosis under Starvation
- MTERF3 Regulates Mitochondrial Ribosome Biogenesis in Invertebrates and Mammals
- Downregulation and Altered Splicing by in a Mouse Model of Facioscapulohumeral Muscular Dystrophy (FSHD)
- NBR1-Mediated Selective Autophagy Targets Insoluble Ubiquitinated Protein Aggregates in Plant Stress Responses
- Retroactive Maintains Cuticle Integrity by Promoting the Trafficking of Knickkopf into the Procuticle of
- Phenome-Wide Association Study (PheWAS) for Detection of Pleiotropy within the Population Architecture using Genomics and Epidemiology (PAGE) Network
- Genetic and Functional Modularity of Activities in the Specification of Limb-Innervating Motor Neurons
- A Population Genetic Model for the Maintenance of R2 Retrotransposons in rRNA Gene Loci
- A Quartet of PIF bHLH Factors Provides a Transcriptionally Centered Signaling Hub That Regulates Seedling Morphogenesis through Differential Expression-Patterning of Shared Target Genes in
- A Genome-Wide Integrative Genomic Study Localizes Genetic Factors Influencing Antibodies against Epstein-Barr Virus Nuclear Antigen 1 (EBNA-1)
- Mutation of the Diamond-Blackfan Anemia Gene in Mouse Results in Morphological and Neuroanatomical Phenotypes
- Life, the Universe, and Everything: An Interview with David Haussler
- Alternative Oxidase Expression in the Mouse Enables Bypassing Cytochrome Oxidase Blockade and Limits Mitochondrial ROS Overproduction
- An Evolutionarily Conserved Synthetic Lethal Interaction Network Identifies FEN1 as a Broad-Spectrum Target for Anticancer Therapeutic Development
- The Flowering Repressor Underlies a Novel QTL Interacting with the Genetic Background
- Telomerase Is Required for Zebrafish Lifespan
- and Diversified Expression of the Gene Family Bolster the Floral Stem Cell Network
- Susceptibility Loci Associated with Specific and Shared Subtypes of Lymphoid Malignancies
- An Insertion in 5′ Flanking Region of Causes Blue Eggshell in the Chicken
- Increased Maternal Genome Dosage Bypasses the Requirement of the FIS Polycomb Repressive Complex 2 in Arabidopsis Seed Development
- WNK1/HSN2 Mutation in Human Peripheral Neuropathy Deregulates Expression and Posterior Lateral Line Development in Zebrafish ()
- Synergistic Interaction of Rnf8 and p53 in the Protection against Genomic Instability and Tumorigenesis
- Dot1-Dependent Histone H3K79 Methylation Promotes Activation of the Mek1 Meiotic Checkpoint Effector Kinase by Regulating the Hop1 Adaptor
- A Heterogeneous Mixture of F-Series Prostaglandins Promotes Sperm Guidance in the Reproductive Tract
- Starvation, Together with the SOS Response, Mediates High Biofilm-Specific Tolerance to the Fluoroquinolone Ofloxacin
- Directed Evolution of a Model Primordial Enzyme Provides Insights into the Development of the Genetic Code
- Genome-Wide Screens for Tinman Binding Sites Identify Cardiac Enhancers with Diverse Functional Architectures
- PLOS Genetics
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- Function and Regulation of , a Gene Implicated in Autism and Human Evolution
- An Insertion in 5′ Flanking Region of Causes Blue Eggshell in the Chicken
- Comprehensive Methylome Characterization of and at Single-Base Resolution
- Susceptibility Loci Associated with Specific and Shared Subtypes of Lymphoid Malignancies
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy