-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
The Vi Capsular Polysaccharide Enables Serovar Typhi to Evade Microbe-Guided Neutrophil Chemotaxis
To control a bacterial infection, neutrophils have to first migrate toward the microbe and then ingest and kill the intruder. Since S. Typhi has a greater propensity than S. Typhimurium to disseminate from its port of entry, we investigated whether both pathogens differ in their ability to evade neutrophil chemotaxis. Remarkably, S. Typhi, but not S. Typhimurium, inhibited neutrophil chemotaxis. Elucidation of the underlying mechanism revealed that microbe-guided chemotaxis proceeded through a C5a-dependent mechanism, which could be blocked by the Vi capsular polysaccharide of S. Typhi. These data suggest that the chemotactic chase of neutrophils is a host defense mechanism operational during gastroenteritis, but not during the initial stages of typhoid fever.
Vyšlo v časopise: The Vi Capsular Polysaccharide Enables Serovar Typhi to Evade Microbe-Guided Neutrophil Chemotaxis. PLoS Pathog 10(8): e32767. doi:10.1371/journal.ppat.1004306
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004306Souhrn
To control a bacterial infection, neutrophils have to first migrate toward the microbe and then ingest and kill the intruder. Since S. Typhi has a greater propensity than S. Typhimurium to disseminate from its port of entry, we investigated whether both pathogens differ in their ability to evade neutrophil chemotaxis. Remarkably, S. Typhi, but not S. Typhimurium, inhibited neutrophil chemotaxis. Elucidation of the underlying mechanism revealed that microbe-guided chemotaxis proceeded through a C5a-dependent mechanism, which could be blocked by the Vi capsular polysaccharide of S. Typhi. These data suggest that the chemotactic chase of neutrophils is a host defense mechanism operational during gastroenteritis, but not during the initial stages of typhoid fever.
Zdroje
1. Nuccio S-P, Wangdi T, Winter SE, Baumler AJ (2013) Typhoid. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The Prokaryotes. 4th ed. Berlin Heidelberg: Springer-Verlag. pp. 353–374.
2. ZhangS, KingsleyRA, SantosRL, Andrews-PolymenisH, RaffatelluM, et al. (2003) Molecular pathogenesis of Salmonella enterica serotype typhimurium - induced diarrhea. Infect Immun 71 : 1–12.
3. SpanoS, UgaldeJE, GalanJE (2008) Delivery of a Salmonella Typhi exotoxin from a host intracellular compartment. Cell Host Microbe 3 : 30–38.
4. SongJ, GaoX, GalanJE (2013) Structure and function of the Salmonella Typhi chimaeric A(2)B(5) typhoid toxin. Nature 499 : 350–354.
5. WinterSE, RaffatelluM, WilsonRP, RussmannH, BaumlerAJ (2008) The Salmonella enterica serotype Typhi regulator TviA reduces interleukin-8 production in intestinal epithelial cells by repressing flagellin secretion. Cell Microbiol 10 : 247–261.
6. WinterSE, WinterMG, GodinezI, YangH-J, RussmannH, et al. (2010) A Rapid Change in Virulence Gene Expression during the Transition from the Intestinal Lumen into Tissue Promotes Systemic Dissemination of Salmonella. PLoS Pathog 6: e1001060.
7. AtifSM, WinterSE, WinterMG, McSorleySJ, BaumlerAJ (2014) Salmonella enterica serovar Typhi impairs CD4 T cell responses by reducing antigen availability. Infect Immun 82 : 2247–2254.
8. TarteraC, MetcalfES (1993) Osmolarity and growth phase overlap in regulation of Salmonella typhi adherence to and invasion of human intestinal cells. Infect Immun 61 : 3084–3089.
9. LeclercGJ, TarteraC, MetcalfES (1998) Environmental regulation of Salmonella typhi invasion-defective mutants. Infect Immun 66 : 682–691.
10. WinterSE, WinterMG, ThiennimitrP, GerrietsVA, NuccioSP, et al. (2009) The TviA auxiliary protein renders the Salmonella enterica serotype Typhi RcsB regulon responsive to changes in osmolarity. Mol Microbiol 74 : 175–193.
11. MillerRM, GarbusJ, HornickRB (1972) Lack of enhanced oxygen consumption by polymorphonuclear leukocytes on phagocytosis of virulent Salmonella typhi. Science 175 : 1010–1011.
12. LooneyRJ, SteigbigelRT (1986) Role of the Vi antigen of Salmonella typhi in resistance to host defense in vitro. J Lab Clin Med 108 : 506–516.
13. HiroseK, EzakiT, MiyakeM, LiT, KhanAQ, et al. (1997) Survival of Vi-capsulated and Vi-deleted Salmonella typhi strains in cultured macrophage expressing different levels of CD14 antigen. FEMS Microbiol Lett 147 : 259–265.
14. WilsonRP, RaffatelluM, ChessaD, WinterSE, TukelC, et al. (2008) The Vi-capsule prevents Toll-like receptor 4 recognition of Salmonella. Cell Microbiol 10 : 876–890.
15. HanedaT, WinterSE, ButlerBP, WilsonRP, TukelC, et al. (2009) The capsule-encoding viaB locus reduces intestinal inflammation by a Salmonella pathogenicity island 1-independent mechanism. Infect Immun 77 : 2932–2942.
16. WilsonRP, WinterSE, SpeesAM, WinterMG, NishimoriJH, et al. (2011) The Vi capsular polysaccharide prevents complement receptor 3-mediated clearance of Salmonella enterica serotype Typhi. Infect Immun 79 : 830–837.
17. JansenAM, HallLJ, ClareS, GouldingD, HoltKE, et al. (2011) A Salmonella Typhimurium-Typhi Genomic Chimera: A Model to Study Vi Polysaccharide Capsule Function In Vivo. PLoS Pathog 7: e1002131.
18. SpanoS, LiuX, GalanJE (2011) Proteolytic targeting of Rab29 by an effector protein distinguishes the intracellular compartments of human-adapted and broad-host Salmonella. Proc Natl Acad Sci U S A 108 : 18418–18423.
19. CrawfordRW, WangdiT, SpeesAM, XavierMN, TsolisRM, et al. (2013) Loss of very-long O-antigen chains optimizes capsule-mediated immune evasion by Salmonella enterica serovar Typhi. MBio 4: pii: e00232-13.
20. NoriegaLM, Van der AuweraP, DaneauD, MeunierF, AounM (1994) Salmonella infections in a cancer center. Support Care Cancer 2 : 116–122.
21. TumbarelloM, TacconelliE, CaponeraS, CaudaR, OrtonaL (1995) The impact of bacteraemia on HIV infection. Nine years experience in a large Italian university hospital. J Infect 31 : 123–131.
22. CunningtonAJ, NjieM, CorreaS, TakemEN, RileyEM, et al. (2012) Prolonged neutrophil dysfunction after Plasmodium falciparum malaria is related to hemolysis and heme oxygenase-1 induction. J Immunol 189 : 5336–5346.
23. ReddyEA, ShawAV, CrumpJA (2010) Community-acquired bloodstream infections in Africa: a systematic review and meta-analysis. Lancet Infect Dis 10 : 417–432.
24. GotzeO, Muller-EberhardHJ (1971) The c3-activator system: an alternate pathway of complement activation. J Exp Med 134 : 90–108.
25. LawSK, LevineRP (1977) Interaction between the third complement protein and cell surface macromolecules. Proc Natl Acad Sci U S A 74 : 2701–2705.
26. TackBF, HarrisonRA, JanatovaJ, ThomasML, PrahlJW (1980) Evidence for presence of an internal thiolester bond in third component of human complement. Proc Natl Acad Sci U S A 77 : 5764–5768.
27. HorwitzMA (1982) Phagocytosis of microorganisms. Rev Infect Dis 4 : 104–123.
28. HeinrichV, LeeCY (2011) Blurred line between chemotactic chase and phagocytic consumption: an immunophysical single-cell perspective. J Cell Sci 124 : 3041–3051.
29. MankovichAR, LeeCY, HeinrichV (2013) Differential effects of serum heat treatment on chemotaxis and phagocytosis by human neutrophils. PLoS One 8: e54735.
30. SchiffmannE, CorcoranBA, WahlSM (1975) N-formylmethionyl peptides as chemoattractants for leucocytes. Proc Natl Acad Sci U S A 72 : 1059–1062.
31. MantheyHD, WoodruffTM, TaylorSM, MonkPN (2009) Complement component 5a (C5a). Int J Biochem Cell Biol 41 : 2114–2117.
32. Muller-EberhardHJ (1975) Complement. Annu Rev Biochem 44 : 697–724.
33. BoydenS (1962) The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med 115 : 453–466.
34. IkariN, SakaiY, HitomiY, FujiiS (1983) New synthetic inhibitor to the alternative complement pathway. Immunology 49 : 685–691.
35. InagiR, MiyataT, MaedaK, SugiyamaS, MiyamaA, et al. (1991) FUT-175 as a potent inhibitor of C5/C3 convertase activity for production of C5a and C3a. Immunol Lett 27 : 49–52.
36. FelixA, PittRM (1934) A new antigen of B. typhosus. Lancet 227 : 186–191.
37. ParkhillJ, DouganG, JamesKD, ThomsonNR, PickardD, et al. (2001) Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413 : 848–852.
38. VirlogeuxI, WaxinH, EcobichonC, PopoffMY (1995) Role of the viaB locus in synthesis, transport and expression of Salmonella typhi Vi antigen. Microbiology 141 (Pt 12) 3039–3047.
39. FischerMB, MaM, GoergS, ZhouX, XiaJ, et al. (1996) Regulation of the B cell response to T-dependent antigens by classical pathway complement. J Immunol 157 : 549–556.
40. HopkenUE, LuB, GerardNP, GerardC (1996) The C5a chemoattractant receptor mediates mucosal defence to infection. Nature 383 : 86–89.
41. RussoTA, DavidsonBA, TopolnyckyDM, OlsonR, MorrillSA, et al. (2003) Human neutrophil chemotaxis is modulated by capsule and O antigen from an extraintestinal pathogenic Escherichia coli strain. Infect Immun 71 : 6435–6445.
42. MellyMA, ThomisonJB, RogersDE (1960) Fate of staphylococci within human leukocytes. J Exp Med 112 : 1121–1130.
43. SmithCW, HollersJC, PatrickRA, HassettC (1979) Motility and adhesiveness in human neutrophils. Effects of chemotactic factors. J Clin Invest 63 : 221–229.
44. ZhelevDV, AlteraifiAM, ChodniewiczD (2004) Controlled pseudopod extension of human neutrophils stimulated with different chemoattractants. Biophys J 87 : 688–695.
45. MusherDM, Hague-ParkM, GyorkeyF, AndersonDC, BaughnRE (1983) The interaction between Treponema pallidum and human polymorphonuclear leukocytes. J Infect Dis 147 : 77–86.
46. DensenP, MacKeenLA, ClarkRA (1982) Dissemination of gonococcal infection is associated with delayed stimulation of complement-dependent neutrophil chemotaxis in vitro. Infect Immun 38 : 563–572.
47. SordelliDO, DjafariM, GarciaVE, FontanPA, DoringG (1992) Age-dependent pulmonary clearance of Pseudomonas aeruginosa in a mouse model: diminished migration of polymorphonuclear leukocytes to N-formyl-methionyl-leucyl-phenylalanine. Infect Immun 60 : 1724–1727.
48. IjiriY, MatsumotoK, KamataR, NishinoN, OkamuraR, et al. (1994) Suppression of polymorphonuclear leucocyte chemotaxis by Pseudomonas aeruginosa elastase in vitro: a study of the mechanisms and the correlation with ring abscess in pseudomonal keratitis. Int J Exp Pathol 75 : 441–451.
49. LiY, LoikeJD, EmberJA, ClearyPP, LuE, et al. (2002) The bacterial peptide N-formyl-Met-Leu-Phe inhibits killing of Staphylococcus epidermidis by human neutrophils in fibrin gels. J Immunol 168 : 816–824.
50. SouthgateEL, HeRL, GaoJL, MurphyPM, NanamoriM, et al. (2008) Identification of formyl peptides from Listeria monocytogenes and Staphylococcus aureus as potent chemoattractants for mouse neutrophils. J Immunol 181 : 1429–1437.
51. MurphyH, CoganT, HumphreyT (2011) Direction of neutrophil movements by Campylobacter-infected intestinal epithelium. Microbes Infect 13 : 42–48.
52. HeynsK, KiesslingG (1967) Strukturaufklarung des Vi-antigens aus Citrobacter freundii (E. coli) 5396/38. Carbohydrate Res 3 : 340–353.
53. LaxaltKA, KozelTR (1979) Chemotaxigenesis and activation of the alternative complement pathway by encapsulated and non-encapsulated Cryptococcus neoformans. Infect Immun 26 : 435–440.
54. CummingsLA, WilkersonWD, BergsbakenT, CooksonBT (2006) In vivo, fliC expression by Salmonella enterica serovar Typhimurium is heterogeneous, regulated by ClpX, and anatomically restricted. Mol Microbiol 61 : 795–809.
55. RaffatelluM, SantosRL, ChessaD, WilsonRP, WinterSE, et al. (2007) The capsule encoding the viaB locus reduces interleukin-17 expression and mucosal innate responses in the bovine intestinal mucosa during infection with Salmonella enterica serotype Typhi. Infect Immun 75 : 4342–4350.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium
Článek Disruption of Fas-Fas Ligand Signaling, Apoptosis, and Innate Immunity by Bacterial PathogensČlánek A Tick Gut Protein with Fibronectin III Domains Aids Congregation to the Gut during TransmissionČlánek Structure of CfaA Suggests a New Family of Chaperones Essential for Assembly of Class 5 Fimbriae
Článok vyšiel v časopisePLOS Pathogens
Najčítanejšie tento týždeň
2014 Číslo 8- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
-
Všetky články tohto čísla
- Regulatory RNAs Involved in Bacterial Antibiotic Resistance
- From Dandruff to Deep-Sea Vents: -like Fungi Are Ecologically Hyper-diverse
- Pathogenicity and Epithelial Immunity
- Mother–Infant HIV Transmission: Do Maternal HIV-Specific Antibodies Protect the Infant?
- Hell's BELs: acterial 3 igases That Exploit the Eukaryotic Ubiquitin Machinery
- Disruption of Fas-Fas Ligand Signaling, Apoptosis, and Innate Immunity by Bacterial Pathogens
- Primary Seronegative but Molecularly Evident Hepadnaviral Infection Engages Liver and Induces Hepatocarcinoma in the Woodchuck Model of Hepatitis B
- TLR2 Signaling Decreases Transmission of by Limiting Bacterial Shedding in an Infant Mouse Influenza A Co-infection Model
- Production of an Attenuated Phenol-Soluble Modulin Variant Unique to the MRSA Clonal Complex 30 Increases Severity of Bloodstream Infection
- Inhibition of the TRAIL Death Receptor by CMV Reveals Its Importance in NK Cell-Mediated Antiviral Defense
- Early Mucosal Sensing of SIV Infection by Paneth Cells Induces IL-1β Production and Initiates Gut Epithelial Disruption
- Limited HIV Infection of Central Memory and Stem Cell Memory CD4+ T Cells Is Associated with Lack of Progression in Viremic Individuals
- Virus-Specific Regulatory T Cells Ameliorate Encephalitis by Repressing Effector T Cell Functions from Priming to Effector Stages
- A Tick Gut Protein with Fibronectin III Domains Aids Congregation to the Gut during Transmission
- The HIV-1 Envelope Transmembrane Domain Binds TLR2 through a Distinct Dimerization Motif and Inhibits TLR2-Mediated Responses
- Infection with MERS-CoV Causes Lethal Pneumonia in the Common Marmoset
- VGIII Isolates Causing Infections in HIV/AIDS Patients in Southern California: Identification of the Local Environmental Source as Arboreal
- Diverse Host-Seeking Behaviors of Skin-Penetrating Nematodes
- Capsid Protein VP4 of Human Rhinovirus Induces Membrane Permeability by the Formation of a Size-Selective Multimeric Pore
- The Murine Gammaherpesvirus Immediate-Early Rta Synergizes with IRF4, Targeting Expression of the Viral M1 Superantigen to Plasma Cells
- Characterization of an Insecticidal Toxin and Pathogenicity of against Insects
- The Vi Capsular Polysaccharide Enables Serovar Typhi to Evade Microbe-Guided Neutrophil Chemotaxis
- Histone Deacetylase Inhibitors Impair the Elimination of HIV-Infected Cells by Cytotoxic T-Lymphocytes
- A Locus Encompassing the Epstein-Barr Virus Kinase Regulates Expression of Genes Encoding Viral Structural Proteins
- Distinct APC Subtypes Drive Spatially Segregated CD4 and CD8 T-Cell Effector Activity during Skin Infection with HSV-1
- Structure of CfaA Suggests a New Family of Chaperones Essential for Assembly of Class 5 Fimbriae
- Adoptive Transfer of EBV Specific CD8 T Cell Clones Can Transiently Control EBV Infection in Humanized Mice
- Schistosome Feeding and Regurgitation
- EVM005: An Ectromelia-Encoded Protein with Dual Roles in NF-κB Inhibition and Virulence
- Rabies Virus Hijacks and Accelerates the p75NTR Retrograde Axonal Transport Machinery
- Why HIV Virions Have Low Numbers of Envelope Spikes: Implications for Vaccine Development
- Identification of Anti-virulence Compounds That Disrupt Quorum-Sensing Regulated Acute and Persistent Pathogenicity
- HIV-1 Receptor Binding Site-Directed Antibodies Using a VH1-2 Gene Segment Orthologue Are Activated by Env Trimer Immunization
- Cooperation between Epstein-Barr Virus Immune Evasion Proteins Spreads Protection from CD8 T Cell Recognition across All Three Phases of the Lytic Cycle
- Parasite Extracellular Vesicles: Mediators of Intercellular Communication
- RC1339/APRc from Is a Novel Aspartic Protease with Properties of Retropepsin-Like Enzymes
- Cyclic di-GMP-dependent Signaling Pathways in the Pathogenic Firmicute
- Non-random Escape Pathways from a Broadly Neutralizing Human Monoclonal Antibody Map to a Highly Conserved Region on the Hepatitis C Virus E2 Glycoprotein Encompassing Amino Acids 412–423
- Neutrophil Elastase Causes Tissue Damage That Decreases Host Tolerance to Lung Infection with Species
- Ly6C Monocyte Recruitment Is Responsible for Th2 Associated Host-Protective Macrophage Accumulation in Liver Inflammation due to Schistosomiasis
- SGNH Hydrolase-Like Proteins AlgJ and AlgX Have Similar Topology but Separate and Distinct Roles in Alginate Acetylation
- Why Sexually Transmitted Infections Tend to Cause Infertility: An Evolutionary Hypothesis
- Late Engagement of CD86 after Influenza Virus Clearance Promotes Recovery in a FoxP3 Regulatory T Cell Dependent Manner
- Determinants of Influenza Transmission in South East Asia: Insights from a Household Cohort Study in Vietnam
- A Novel Signal Transduction Pathway that Modulates Quorum Sensing and Bacterial Virulence in
- Host Responses to Group A Streptococcus: Cell Death and Inflammation
- A Cysteine Protease Inhibitor of Is Essential for Exo-erythrocytic Development
- EBNA3C Augments Pim-1 Mediated Phosphorylation and Degradation of p21 to Promote B-Cell Proliferation
- On the Front Line: Quantitative Virus Dynamics in Honeybee ( L.) Colonies along a New Expansion Front of the Parasite
- Assembly and Architecture of the EBV B Cell Entry Triggering Complex
- NLR-Associating Transcription Factor bHLH84 and Its Paralogs Function Redundantly in Plant Immunity
- The PDZ-Binding Motif of Severe Acute Respiratory Syndrome Coronavirus Envelope Protein Is a Determinant of Viral Pathogenesis
- Strain-Specific Properties and T Cells Regulate the Susceptibility to Papilloma Induction by Papillomavirus 1
- Human Cytomegalovirus pUL79 Is an Elongation Factor of RNA Polymerase II for Viral Gene Transcription
- The GAP Activity of Type III Effector YopE Triggers Killing of in Macrophages
- PLOS Pathogens
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- Disruption of Fas-Fas Ligand Signaling, Apoptosis, and Innate Immunity by Bacterial Pathogens
- Ly6C Monocyte Recruitment Is Responsible for Th2 Associated Host-Protective Macrophage Accumulation in Liver Inflammation due to Schistosomiasis
- Host Responses to Group A Streptococcus: Cell Death and Inflammation
- Pathogenicity and Epithelial Immunity
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy