#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Positive Signature-Tagged Mutagenesis in : Tracking Patho-Adaptive Mutations Promoting Airways Chronic Infection


The opportunistic pathogen Pseudomonas aeruginosa can establish life-long chronic infections in the airways of cystic fibrosis (CF) patients. Persistent lifestyle is established with P. aeruginosa patho-adaptive variants, which are clonal with the initially-acquired strains. Several reports indicated that P. aeruginosa adapts by loss-of-function mutations which enhance fitness in CF airways and sustain its clonal expansion during chronic infection. To validate this model of P. aeruginosa adaptation to CF airways and to identify novel genes involved in this microevolution, we designed a novel approach of positive-selection screening by PCR-based signature-tagged mutagenesis (Pos-STM) in a murine model of chronic airways infection. A systematic positive-selection scheme using sequential rounds of in vivo screenings for bacterial maintenance, as opposed to elimination, generated a list of genes whose inactivation increased the colonization and persistence in chronic airways infection. The phenotypes associated to these Pos-STM mutations reflect alterations in diverse aspects of P. aeruginosa biology which include lack of swimming and twitching motility, lack of production of the virulence factors such as pyocyanin, biofilm formation, and metabolic functions. In addition, Pos-STM mutants showed altered invasion and stimulation of immune response when tested in human respiratory epithelial cells, indicating that P. aeruginosa is prone to revise the interaction with its host during persistent lifestyle. Finally, sequence analysis of Pos-STM genes in longitudinally P. aeruginosa isolates from CF patients identified signs of patho-adaptive mutations within the genome. This novel Pos-STM approach identified bacterial functions that can have important clinical implications for the persistent lifestyle and disease progression of the airway chronic infection.


Vyšlo v časopise: Positive Signature-Tagged Mutagenesis in : Tracking Patho-Adaptive Mutations Promoting Airways Chronic Infection. PLoS Pathog 7(2): e32767. doi:10.1371/journal.ppat.1001270
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1001270

Souhrn

The opportunistic pathogen Pseudomonas aeruginosa can establish life-long chronic infections in the airways of cystic fibrosis (CF) patients. Persistent lifestyle is established with P. aeruginosa patho-adaptive variants, which are clonal with the initially-acquired strains. Several reports indicated that P. aeruginosa adapts by loss-of-function mutations which enhance fitness in CF airways and sustain its clonal expansion during chronic infection. To validate this model of P. aeruginosa adaptation to CF airways and to identify novel genes involved in this microevolution, we designed a novel approach of positive-selection screening by PCR-based signature-tagged mutagenesis (Pos-STM) in a murine model of chronic airways infection. A systematic positive-selection scheme using sequential rounds of in vivo screenings for bacterial maintenance, as opposed to elimination, generated a list of genes whose inactivation increased the colonization and persistence in chronic airways infection. The phenotypes associated to these Pos-STM mutations reflect alterations in diverse aspects of P. aeruginosa biology which include lack of swimming and twitching motility, lack of production of the virulence factors such as pyocyanin, biofilm formation, and metabolic functions. In addition, Pos-STM mutants showed altered invasion and stimulation of immune response when tested in human respiratory epithelial cells, indicating that P. aeruginosa is prone to revise the interaction with its host during persistent lifestyle. Finally, sequence analysis of Pos-STM genes in longitudinally P. aeruginosa isolates from CF patients identified signs of patho-adaptive mutations within the genome. This novel Pos-STM approach identified bacterial functions that can have important clinical implications for the persistent lifestyle and disease progression of the airway chronic infection.


Zdroje

1. BragonziA

ParoniM

NonisA

CramerN

MontanariS

2009 Pseudomonas aeruginosa microevolution during cystic fibrosis lung infection establishes clones with adapted virulence. AJRCCM 180 138 145

2. CiganaC

CurcurùL

LeoneMR

IeranòT

LorèNI

2009 Pseudomonas aeruginosa exploits lipid A and muropeptides modification as a strategy to lower innate immunity during cystic fibrosis lung infection. PLoS One 4 e8439

3. SmithEE

BuckleyDG

WuZ

SaenphimmachakC

HoffmanLR

2006 Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 30 8487 8492

4. TümmlerB

2006 Clonal variations in Pseudomonas aeruginosa.

RamosJ-L

LevesqueRC

Pseudomonas: molecular biology of emerging issues, vol. 4 New York Springer 35 68

5. BragonziA

WiehlmannL

KlockgetherJ

CramerN

WorlitzschD

2006 Sequence diversity of the mucABD locus in Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Microbiology 152 3261 3269

6. MahenthiralingamE

CampbellME

SpeertDP

1994 Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect Immun 62 596 605

7. D'ArgenioDA

WuM

HoffmanLR

KulasekaraHD

DézielE

2007 Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients. Mol Microbiol 64 512 533

8. HoffmanL

KulasekaraHD

EmersonJ

HoustonLS

BurnsJL

2009 Pseudomonas aeruginosa lasR mutants are associated with cystic fibrosis lung disease progression. J Cyst Fibros 8 66 70

9. JainM

RamirezD

SeshadriR

CullinaJF

PowersCA

2004 Type III secretion phenotypes of Pseudomonas aeruginosa strains change during infection of individuals with cystic fibrosis. J Clin Microbiol 42 5229 5237

10. OliverA

CantónR

CampoP

BaqueroF

BlázquezJ

2000 High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288 1251 1254

11. RakhimovaE

MunderA

WiehlmannL

BredenbruchF

TümmlerB

2008 Fitness of isogenic colony morphology variants of Pseudomonas aeruginosa in murine airway infection. PLoS One 3 e1685

12. YoungD

HussellT

DouganG

2002 Chronic bacterial infections: living with unwanted guests. Nat Immunol 3 1026 1032

13. NguyenD

SinghPK

2006 Evolving stealth: genetic adaptation of Pseudomonas aeruginosa during cystic fibrosis infections. Proc Natl Acad Sci U S A 30 8305 8306

14. SokurenkoE

ChesnokovaV

DykhuizenDE

OfekI

WuXR

1998 Pathogenic adaptation of Escherichia coli by natural variation of the FimH adhesin. Proc Natl Acad Sci U S A 95 8922 8926

15. MoxonE

MurphyPA

1978 Haemophilus influenzae bacteremia and meningitis resulting from survival of a single organism. Proc Natl Acad Sci U S A 75 1534 1536

16. AkopyantsN

EatonKA

BergDE

1995 Adaptive mutation and cocolonization during Helicobacter pylori infection of gnotobiotic piglets. Infect Immun 63 116 121

17. GalperinM

KooninEV

2010 From complete genome sequence to ‘complete’ understanding? Trends Biotechnol 28 398 406

18. HenselM

SheaJE

GleesonC

JonesMD

DaltonE

1995 Simultaneous identification of bacterial virulence genes by negative selection. Science 269 400 403

19. CoulterSN

SchwanWR

NgEY

LanghorneMH

RitchieHD

1998 Staphylococcus aureus genetic loci impacting growth and survival in multiple infection environments. Mol Microbiol 30 393 404

20. HerbertMA

HayesS

DeadmanME

TangCM

HoodDW

2002 Signature Tagged Mutagenesis of Haemophilus influenzae identifies genes required for in vivo survival. Microb Pathog 33 211 23

21. BragonziA

2010 Murine models of acute and chronic lung infection with cystic fibrosis pathogens. IJMM 300 584 93

22. PotvinE

LehouxDE

Kukavica-IbruljI

RichardKL

SanschagrinF

2003 In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial targets. Environ Microbiol 5 1294 1308

23. BragonziA

WorlitzschD

PierGB

TimpertP

UlrichM

2005 Nonmucoid Pseudomonas aeruginosa expresses alginate in the lungs of patients with cystic fibrosis and in a mouse model. J Infect Dis 192 410 419

24. ReadAF

TaylorLH

2001 The ecology of genetically diverse infections. Science 292 1099 1102

25. FeldmanM

BryanR

RajanS

SchefflerL

BrunnertS

1998 Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection. Infect Immun 66 43 51

26. TangHB

DiMangoE

BryanR

GambelloM

IglewskiBH

1996 Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection. Infect Immun 64 37 43

27. BohnYS

BrandesG

RakhimovaE

HoratzekS

SalunkheP

2009 Multiple roles of Pseudomonas aeruginosa TBCF10839 PilY1 in motility, transport and infection. Mol Microbiol 71 730 747

28. O'TooleGA

KolterR

1998 Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30 295 304

29. OchsnerUA

FiechterA

ReiserJ

1994 Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem 269 19787 19795

30. Abdel-MawgoudAM

LépineF

DézielE

2010 Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86 1323 1336

31. LuCD

YangZ

LiW

2004 Transcriptome analysis of the ArgR regulon in Pseudomonas aeruginosa. J Bacteriol 186 3855 3861

32. HaasD

GalimandsM

GamperM

ZimmermannA

1990 Arginine network of Pseudomonas aeruginosa: specific and global controls.

SilverS

ChakrabartyA-M

IglewskiB

KaplanS

Pseudomonas: biotransformations, pathogenesis, and evolving biotechnology Washington, DC American Society for Microbiology 303 316

33. ItohY

1997 Cloning and characterization of the aru genes encoding enzymes of the catabolic arginine succinyltransferase pathway in Pseudomonas aeruginosa. J Bacteriol 179 7280 7729

34. WorlitzschD

TarranR

UlrichM

SchwabU

CekiciA

2002 Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 109 317 325

35. Alvarez-OrtegaC

HarwoodCS

2007 Responses of Pseudomonas aeruginosa to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration. Mol Microbiol 65 153 165

36. MartinDW

MohrCD

2000 Invasion and intracellular survival of Burkholderia cepacia. Infection and Immunity 68 24 29

37. PhilpottDJ

BelaidD

TroubadourP

ThibergeJM

TankovicJ

2002 Reduced activation of inflammatory responses in host cells by mouse-adapted Helicobacter pylory isolates. Cell Microbiol 4 285 296

38. MonackD

MuellerA

FalkowS

2004 Persistent bacterial infections: the interface of the pathogen and the host immune system. Nat Rev Microbiol 2 747 765

39. FinlayB

FalkowS

1997 Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev 61 136 169

40. KaufmannSHE

1993 Immunity to intracellular bacteria. Annu Rev Immunol 11 129 163

41. LamotheJ

HuynhKK

GrinsteinS

ValvanoMA

2007 Intracellular survival of Burkholderia cenocepacia in macrophages is associated with a delay in the maturation of bacter. Cell Microbiol 9 40 53

42. PierG

GroutM

ZaidiTS

OlsenJC

JohnsonLG

1996 Role of mutant CFTR in hypersusceptibility of cystic fibrosis patients to lung infections. Science 271 64 67

43. PierG

GroutM

ZaidiTS

1997 Cystic fibrosis transmembrane conductance regulator is an epithelial cell receptor for clearance of Pseudomonas aeruginosa from the lung. Proc Natl Acad Sci U S A 94 12088 12093

44. KumarP

HenikoffS

NgPC

2009 Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4 1073 1081

45. HollowayB

KrishnapillaiV

MorganAF

1979 Chromosomal genetics of Pseudomonas. Microbiol Rev 43 73 102

46. KwonY

RickeSC

2000 Efficient amplification of multiple transposon-flanking sequences. J Microbiol Methods 41 195 199

47. MontanariS

OliverA

SalernoP

MenaA

BertoniG

2007 Biological cost of hypermutation in Pseudomonas aeruginosa strains from patients with cystic fibrosis. Microbiology 153 1445 1454

48. PironeL

BragonziA

FarcomeniA

ParoniM

AuricheC

2008 Burkholderia cenocepacia strains isolated from cystic fibrosis patients are apparently more invasive and more virulent than rhizosphere strains. Environ Microbiol 10 2773 2784

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#